Skip to main content
Top

2024 | OriginalPaper | Chapter

27. Inductive and Capacitive Coupling Noise in Superconductive VLSI Circuits

Authors : Gleb Krylov, Tahereh Jabbari, Eby G. Friedman

Published in: Single Flux Quantum Integrated Circuit Design

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The increasing complexity of modern superconductive circuits, and single flux quantum (SFQ) circuits in particular, has made the issue of coupling noise of growing importance. Limited metal resources within superconductive circuits have exacerbated this issue. In this chapter, the different sources of coupling noise within SFQ circuits are described. Coupling noise among inductors, routing striplines, and bias microstriplines within SFQ circuits degrades performance while decreasing margins. In this chapter, inductive and capacitive coupling noise between the different layers is characterized. Inductive coupling models between different layers in the MIT LL SFQ5ee process match experimental data within 3%. The dependence of inductive coupling on the thickness of the oxide and metal layer is also discussed. An understanding of inductive and capacitive coupling noise can determine the minimum physical distance between lines. In addition, trade-offs exist among inductive coupling, capacitive coupling, layout complexity, and the vias between ground layers. The different coupling sources are characterized, and guidelines are provided to enhance the automated routing process.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
38.
go back to reference S. Whiteley, E. Mlinar, G. Krylov, T. Jabbari, E.G. Friedman, J. Kawa, An SFQ digital circuit technology with fully-passive transmission line interconnect, in Proceedings of the Applied Superconductivity Conference (2020) S. Whiteley, E. Mlinar, G. Krylov, T. Jabbari, E.G. Friedman, J. Kawa, An SFQ digital circuit technology with fully-passive transmission line interconnect, in Proceedings of the Applied Superconductivity Conference (2020)
39.
go back to reference T. Jabbari, G. Krylov, S. Whiteley, E. Mlinar, J Kawa, E.G. Friedman, Interconnect routing for large scale RSFQ circuits. IEEE Trans. Appl. Supercond. 29(5), 1102805 (2019) T. Jabbari, G. Krylov, S. Whiteley, E. Mlinar, J Kawa, E.G. Friedman, Interconnect routing for large scale RSFQ circuits. IEEE Trans. Appl. Supercond. 29(5), 1102805 (2019)
41.
go back to reference T. Jabbari, E.G. Friedman, Global interconnects in VLSI complexity single flux quantum systems, in Proceedings of the Workshop on System-Level Interconnect: Problems and Pathfinding Workshop (2020), pp. 1–7 T. Jabbari, E.G. Friedman, Global interconnects in VLSI complexity single flux quantum systems, in Proceedings of the Workshop on System-Level Interconnect: Problems and Pathfinding Workshop (2020), pp. 1–7
42.
go back to reference T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Repeater insertion in SFQ interconnect. IEEE Trans. Appl. Supercond. 30(8), 5400508 (2020) T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Repeater insertion in SFQ interconnect. IEEE Trans. Appl. Supercond. 30(8), 5400508 (2020)
57.
go back to reference T. Jabbari, E.G. Friedman, Transmission lines in VLSI complexity single flux quantum systems, in Proceedings of the PhotonIcs and Electromagnetics Research Symposium (2023), pp. 1749–1759 T. Jabbari, E.G. Friedman, Transmission lines in VLSI complexity single flux quantum systems, in Proceedings of the PhotonIcs and Electromagnetics Research Symposium (2023), pp. 1749–1759
58.
go back to reference R. Bairamkulov, T. Jabbari, E.G. Friedman, QuCTS – single flux quantum clock tree synthesis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 41(10), 3346–3358 (2022)CrossRef R. Bairamkulov, T. Jabbari, E.G. Friedman, QuCTS – single flux quantum clock tree synthesis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 41(10), 3346–3358 (2022)CrossRef
61.
go back to reference T. Jabbari, E.G. Friedman, Flux mitigation in wide superconductive striplines. IEEE Trans. Appl. Supercond. 32(3), 1–6 (2022)CrossRef T. Jabbari, E.G. Friedman, Flux mitigation in wide superconductive striplines. IEEE Trans. Appl. Supercond. 32(3), 1–6 (2022)CrossRef
62.
go back to reference A. Mitrovic, E.G. Friedman, Thermal modeling of rapid single flux quantum circuit structures. IEEE Trans. Electron. Devices 69(5), 2718–2724 (2022)CrossRef A. Mitrovic, E.G. Friedman, Thermal modeling of rapid single flux quantum circuit structures. IEEE Trans. Electron. Devices 69(5), 2718–2724 (2022)CrossRef
63.
go back to reference T. Jabbari, E.G. Friedman, Stripline topology for flux mitigation. IEEE Trans. Appl. Supercond. 335, 1–4 (2023) T. Jabbari, E.G. Friedman, Stripline topology for flux mitigation. IEEE Trans. Appl. Supercond. 335, 1–4 (2023)
65.
go back to reference T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Resonance effects in single flux quantum interconnect, in Proceedings of the Government Microcircuit Applications and Critical Technology Conference (2020), pp. 1–5 T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Resonance effects in single flux quantum interconnect, in Proceedings of the Government Microcircuit Applications and Critical Technology Conference (2020), pp. 1–5
87.
go back to reference T. Jabbari, E.G. Friedman, Surface inductance of superconductive striplines. IEEE Trans. Circuits Syst. II Express Briefs 69(6), 2952–2956 (2022) T. Jabbari, E.G. Friedman, Surface inductance of superconductive striplines. IEEE Trans. Circuits Syst. II Express Briefs 69(6), 2952–2956 (2022)
111.
go back to reference S.K. Tolpygo, V. Bolkhovsky, T.J. Weir, A. Wynn, D.E. Oates, L.M. Johnson, M.A. Gouker, Advanced fabrication processes for superconducting very large-scale integrated circuits. IEEE Trans. Appl. Supercond. 26(3), 1–10 (2016)CrossRef S.K. Tolpygo, V. Bolkhovsky, T.J. Weir, A. Wynn, D.E. Oates, L.M. Johnson, M.A. Gouker, Advanced fabrication processes for superconducting very large-scale integrated circuits. IEEE Trans. Appl. Supercond. 26(3), 1–10 (2016)CrossRef
137.
go back to reference T. Jabbari, E.G. Friedman, Inductive and capacitive coupling noise in superconductive VLSI circuits. IEEE Trans. Appl. Supercond. 33(9), 3800707 (2023) T. Jabbari, E.G. Friedman, Inductive and capacitive coupling noise in superconductive VLSI circuits. IEEE Trans. Appl. Supercond. 33(9), 3800707 (2023)
224.
go back to reference S.S. Meher, C. Kanungo, A. Shukla, A. Inamdar, Parametric approach for routing power nets and passive transmission lines as part of digital cells. IEEE Trans. Appl. Supercond. 29(5), 1–7 (2019)CrossRef S.S. Meher, C. Kanungo, A. Shukla, A. Inamdar, Parametric approach for routing power nets and passive transmission lines as part of digital cells. IEEE Trans. Appl. Supercond. 29(5), 1–7 (2019)CrossRef
242.
go back to reference T. Jabbari, R. Bairamkulov, J. Kawa, E. Friedman, Interconnect benchmark circuits for single flux quantum integrated circuits. IEEE Trans. Appl. Supercond. (2023). Under review T. Jabbari, R. Bairamkulov, J. Kawa, E. Friedman, Interconnect benchmark circuits for single flux quantum integrated circuits. IEEE Trans. Appl. Supercond. (2023). Under review
249.
go back to reference S.K. Tolpygo, V. Bolkhovsky, T.J. Weir, C.J. Galbraith, L.M. Johnson, M.A. Gouker, V.K. Semenov, Inductance of circuit structures for MIT LL superconductor electronics fabrication process with 8 niobium layers. IEEE Trans. Appl. Supercond. 25(3), 1–5 (2015) S.K. Tolpygo, V. Bolkhovsky, T.J. Weir, C.J. Galbraith, L.M. Johnson, M.A. Gouker, V.K. Semenov, Inductance of circuit structures for MIT LL superconductor electronics fabrication process with 8 niobium layers. IEEE Trans. Appl. Supercond. 25(3), 1–5 (2015)
549.
go back to reference S.K. Tolpygo, E.B. Golden, T.J. Weir, V. Bolkhovsky, Inductance of superconductor integrated circuit features with sizes down to 120 nm. Supercond. Sci. Technol. 34(8), 1–24 (2021)CrossRef S.K. Tolpygo, E.B. Golden, T.J. Weir, V. Bolkhovsky, Inductance of superconductor integrated circuit features with sizes down to 120 nm. Supercond. Sci. Technol. 34(8), 1–24 (2021)CrossRef
553.
go back to reference G. Krylov, E.G Friedman, Inductive noise coupling in multilayer superconductive ICs. Microelectron. J. 126(105336), 1–5 (2022) G. Krylov, E.G Friedman, Inductive noise coupling in multilayer superconductive ICs. Microelectron. J. 126(105336), 1–5 (2022)
566.
go back to reference C.J. Fourie, C. Shawawreh, I.V. Vernik, T.V. Filippov, High-accuracy InductEx calibration sets for MIT-LL SFQ4ee and SFQ5ee processes. IEEE Trans. Appl. Supercond. 27(2), 1–5 (2017)CrossRef C.J. Fourie, C. Shawawreh, I.V. Vernik, T.V. Filippov, High-accuracy InductEx calibration sets for MIT-LL SFQ4ee and SFQ5ee processes. IEEE Trans. Appl. Supercond. 27(2), 1–5 (2017)CrossRef
567.
go back to reference G. Krylov, E.G Friedman, Inductive noise coupling in superconductive passive transmission lines, in Proceedings of the IEEE International Midwest Symposium on Circuits and Systems (2021), pp. 1–5 G. Krylov, E.G Friedman, Inductive noise coupling in superconductive passive transmission lines, in Proceedings of the IEEE International Midwest Symposium on Circuits and Systems (2021), pp. 1–5
591.
go back to reference R.N. Das, V. Bolkhovsky, S.K. Tolpygo, P. Gouker, L.M. Johnson, E.A. Dauler, M.A. Gouker, Large scale cryogenic integration approach for superconducting high-performance computing, in Proceedings of the IEEE Electronic Components and Technology Conference (2017), pp. 675–683 R.N. Das, V. Bolkhovsky, S.K. Tolpygo, P. Gouker, L.M. Johnson, E.A. Dauler, M.A. Gouker, Large scale cryogenic integration approach for superconducting high-performance computing, in Proceedings of the IEEE Electronic Components and Technology Conference (2017), pp. 675–683
600.
go back to reference Y. Mizugaki, A. Kawai, R. Kashiwa, M. Moriya, T. Kobayashi, Mutual coupling between two superconducting strip lines horizontally-placed in niobium integrated chips. J. Phys. Conf. Ser. 234(4), 042021 (2010) Y. Mizugaki, A. Kawai, R. Kashiwa, M. Moriya, T. Kobayashi, Mutual coupling between two superconducting strip lines horizontally-placed in niobium integrated chips. J. Phys. Conf. Ser. 234(4), 042021 (2010)
601.
go back to reference B. Chonigman, A. Shukla, M. Habib, V. Gupta, D. Kirichenko A. Talalaevskii, A. Sahu, A. Inamdar, D. Gupta, Optimization of passive transmission lines for single flux quantum circuits. IEEE Trans. Appl. Supercond. 31(5), 1–6 (2021)CrossRef B. Chonigman, A. Shukla, M. Habib, V. Gupta, D. Kirichenko A. Talalaevskii, A. Sahu, A. Inamdar, D. Gupta, Optimization of passive transmission lines for single flux quantum circuits. IEEE Trans. Appl. Supercond. 31(5), 1–6 (2021)CrossRef
602.
go back to reference T. Yamamoto, K. Inomata, K. Koshino, P-M. Billangeon, Y. Nakamura, J.S. Tsai, Superconducting flux qubit capacitively coupled to an LC resonator. New J. Phys. 16, 015017 (2014)CrossRef T. Yamamoto, K. Inomata, K. Koshino, P-M. Billangeon, Y. Nakamura, J.S. Tsai, Superconducting flux qubit capacitively coupled to an LC resonator. New J. Phys. 16, 015017 (2014)CrossRef
603.
go back to reference Y.I. Ismail, E.G. Friedman, J.L. Neves, Dynamic and short-circuit power of CMOS gates driving lossless transmission lines. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 46(8), 950–961 (1999)CrossRef Y.I. Ismail, E.G. Friedman, J.L. Neves, Dynamic and short-circuit power of CMOS gates driving lossless transmission lines. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 46(8), 950–961 (1999)CrossRef
Metadata
Title
Inductive and Capacitive Coupling Noise in Superconductive VLSI Circuits
Authors
Gleb Krylov
Tahereh Jabbari
Eby G. Friedman
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-47475-0_27