Skip to main content

2024 | OriginalPaper | Buchkapitel

27. Inductive and Capacitive Coupling Noise in Superconductive VLSI Circuits

verfasst von : Gleb Krylov, Tahereh Jabbari, Eby G. Friedman

Erschienen in: Single Flux Quantum Integrated Circuit Design

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The increasing complexity of modern superconductive circuits, and single flux quantum (SFQ) circuits in particular, has made the issue of coupling noise of growing importance. Limited metal resources within superconductive circuits have exacerbated this issue. In this chapter, the different sources of coupling noise within SFQ circuits are described. Coupling noise among inductors, routing striplines, and bias microstriplines within SFQ circuits degrades performance while decreasing margins. In this chapter, inductive and capacitive coupling noise between the different layers is characterized. Inductive coupling models between different layers in the MIT LL SFQ5ee process match experimental data within 3%. The dependence of inductive coupling on the thickness of the oxide and metal layer is also discussed. An understanding of inductive and capacitive coupling noise can determine the minimum physical distance between lines. In addition, trade-offs exist among inductive coupling, capacitive coupling, layout complexity, and the vias between ground layers. The different coupling sources are characterized, and guidelines are provided to enhance the automated routing process.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
38.
Zurück zum Zitat S. Whiteley, E. Mlinar, G. Krylov, T. Jabbari, E.G. Friedman, J. Kawa, An SFQ digital circuit technology with fully-passive transmission line interconnect, in Proceedings of the Applied Superconductivity Conference (2020) S. Whiteley, E. Mlinar, G. Krylov, T. Jabbari, E.G. Friedman, J. Kawa, An SFQ digital circuit technology with fully-passive transmission line interconnect, in Proceedings of the Applied Superconductivity Conference (2020)
39.
Zurück zum Zitat T. Jabbari, G. Krylov, S. Whiteley, E. Mlinar, J Kawa, E.G. Friedman, Interconnect routing for large scale RSFQ circuits. IEEE Trans. Appl. Supercond. 29(5), 1102805 (2019) T. Jabbari, G. Krylov, S. Whiteley, E. Mlinar, J Kawa, E.G. Friedman, Interconnect routing for large scale RSFQ circuits. IEEE Trans. Appl. Supercond. 29(5), 1102805 (2019)
41.
Zurück zum Zitat T. Jabbari, E.G. Friedman, Global interconnects in VLSI complexity single flux quantum systems, in Proceedings of the Workshop on System-Level Interconnect: Problems and Pathfinding Workshop (2020), pp. 1–7 T. Jabbari, E.G. Friedman, Global interconnects in VLSI complexity single flux quantum systems, in Proceedings of the Workshop on System-Level Interconnect: Problems and Pathfinding Workshop (2020), pp. 1–7
42.
Zurück zum Zitat T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Repeater insertion in SFQ interconnect. IEEE Trans. Appl. Supercond. 30(8), 5400508 (2020) T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Repeater insertion in SFQ interconnect. IEEE Trans. Appl. Supercond. 30(8), 5400508 (2020)
57.
Zurück zum Zitat T. Jabbari, E.G. Friedman, Transmission lines in VLSI complexity single flux quantum systems, in Proceedings of the PhotonIcs and Electromagnetics Research Symposium (2023), pp. 1749–1759 T. Jabbari, E.G. Friedman, Transmission lines in VLSI complexity single flux quantum systems, in Proceedings of the PhotonIcs and Electromagnetics Research Symposium (2023), pp. 1749–1759
58.
Zurück zum Zitat R. Bairamkulov, T. Jabbari, E.G. Friedman, QuCTS – single flux quantum clock tree synthesis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 41(10), 3346–3358 (2022)CrossRef R. Bairamkulov, T. Jabbari, E.G. Friedman, QuCTS – single flux quantum clock tree synthesis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 41(10), 3346–3358 (2022)CrossRef
61.
Zurück zum Zitat T. Jabbari, E.G. Friedman, Flux mitigation in wide superconductive striplines. IEEE Trans. Appl. Supercond. 32(3), 1–6 (2022)CrossRef T. Jabbari, E.G. Friedman, Flux mitigation in wide superconductive striplines. IEEE Trans. Appl. Supercond. 32(3), 1–6 (2022)CrossRef
62.
Zurück zum Zitat A. Mitrovic, E.G. Friedman, Thermal modeling of rapid single flux quantum circuit structures. IEEE Trans. Electron. Devices 69(5), 2718–2724 (2022)CrossRef A. Mitrovic, E.G. Friedman, Thermal modeling of rapid single flux quantum circuit structures. IEEE Trans. Electron. Devices 69(5), 2718–2724 (2022)CrossRef
63.
Zurück zum Zitat T. Jabbari, E.G. Friedman, Stripline topology for flux mitigation. IEEE Trans. Appl. Supercond. 335, 1–4 (2023) T. Jabbari, E.G. Friedman, Stripline topology for flux mitigation. IEEE Trans. Appl. Supercond. 335, 1–4 (2023)
65.
Zurück zum Zitat T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Resonance effects in single flux quantum interconnect, in Proceedings of the Government Microcircuit Applications and Critical Technology Conference (2020), pp. 1–5 T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Resonance effects in single flux quantum interconnect, in Proceedings of the Government Microcircuit Applications and Critical Technology Conference (2020), pp. 1–5
87.
Zurück zum Zitat T. Jabbari, E.G. Friedman, Surface inductance of superconductive striplines. IEEE Trans. Circuits Syst. II Express Briefs 69(6), 2952–2956 (2022) T. Jabbari, E.G. Friedman, Surface inductance of superconductive striplines. IEEE Trans. Circuits Syst. II Express Briefs 69(6), 2952–2956 (2022)
111.
Zurück zum Zitat S.K. Tolpygo, V. Bolkhovsky, T.J. Weir, A. Wynn, D.E. Oates, L.M. Johnson, M.A. Gouker, Advanced fabrication processes for superconducting very large-scale integrated circuits. IEEE Trans. Appl. Supercond. 26(3), 1–10 (2016)CrossRef S.K. Tolpygo, V. Bolkhovsky, T.J. Weir, A. Wynn, D.E. Oates, L.M. Johnson, M.A. Gouker, Advanced fabrication processes for superconducting very large-scale integrated circuits. IEEE Trans. Appl. Supercond. 26(3), 1–10 (2016)CrossRef
137.
Zurück zum Zitat T. Jabbari, E.G. Friedman, Inductive and capacitive coupling noise in superconductive VLSI circuits. IEEE Trans. Appl. Supercond. 33(9), 3800707 (2023) T. Jabbari, E.G. Friedman, Inductive and capacitive coupling noise in superconductive VLSI circuits. IEEE Trans. Appl. Supercond. 33(9), 3800707 (2023)
224.
Zurück zum Zitat S.S. Meher, C. Kanungo, A. Shukla, A. Inamdar, Parametric approach for routing power nets and passive transmission lines as part of digital cells. IEEE Trans. Appl. Supercond. 29(5), 1–7 (2019)CrossRef S.S. Meher, C. Kanungo, A. Shukla, A. Inamdar, Parametric approach for routing power nets and passive transmission lines as part of digital cells. IEEE Trans. Appl. Supercond. 29(5), 1–7 (2019)CrossRef
242.
Zurück zum Zitat T. Jabbari, R. Bairamkulov, J. Kawa, E. Friedman, Interconnect benchmark circuits for single flux quantum integrated circuits. IEEE Trans. Appl. Supercond. (2023). Under review T. Jabbari, R. Bairamkulov, J. Kawa, E. Friedman, Interconnect benchmark circuits for single flux quantum integrated circuits. IEEE Trans. Appl. Supercond. (2023). Under review
249.
Zurück zum Zitat S.K. Tolpygo, V. Bolkhovsky, T.J. Weir, C.J. Galbraith, L.M. Johnson, M.A. Gouker, V.K. Semenov, Inductance of circuit structures for MIT LL superconductor electronics fabrication process with 8 niobium layers. IEEE Trans. Appl. Supercond. 25(3), 1–5 (2015) S.K. Tolpygo, V. Bolkhovsky, T.J. Weir, C.J. Galbraith, L.M. Johnson, M.A. Gouker, V.K. Semenov, Inductance of circuit structures for MIT LL superconductor electronics fabrication process with 8 niobium layers. IEEE Trans. Appl. Supercond. 25(3), 1–5 (2015)
549.
Zurück zum Zitat S.K. Tolpygo, E.B. Golden, T.J. Weir, V. Bolkhovsky, Inductance of superconductor integrated circuit features with sizes down to 120 nm. Supercond. Sci. Technol. 34(8), 1–24 (2021)CrossRef S.K. Tolpygo, E.B. Golden, T.J. Weir, V. Bolkhovsky, Inductance of superconductor integrated circuit features with sizes down to 120 nm. Supercond. Sci. Technol. 34(8), 1–24 (2021)CrossRef
553.
Zurück zum Zitat G. Krylov, E.G Friedman, Inductive noise coupling in multilayer superconductive ICs. Microelectron. J. 126(105336), 1–5 (2022) G. Krylov, E.G Friedman, Inductive noise coupling in multilayer superconductive ICs. Microelectron. J. 126(105336), 1–5 (2022)
566.
Zurück zum Zitat C.J. Fourie, C. Shawawreh, I.V. Vernik, T.V. Filippov, High-accuracy InductEx calibration sets for MIT-LL SFQ4ee and SFQ5ee processes. IEEE Trans. Appl. Supercond. 27(2), 1–5 (2017)CrossRef C.J. Fourie, C. Shawawreh, I.V. Vernik, T.V. Filippov, High-accuracy InductEx calibration sets for MIT-LL SFQ4ee and SFQ5ee processes. IEEE Trans. Appl. Supercond. 27(2), 1–5 (2017)CrossRef
567.
Zurück zum Zitat G. Krylov, E.G Friedman, Inductive noise coupling in superconductive passive transmission lines, in Proceedings of the IEEE International Midwest Symposium on Circuits and Systems (2021), pp. 1–5 G. Krylov, E.G Friedman, Inductive noise coupling in superconductive passive transmission lines, in Proceedings of the IEEE International Midwest Symposium on Circuits and Systems (2021), pp. 1–5
591.
Zurück zum Zitat R.N. Das, V. Bolkhovsky, S.K. Tolpygo, P. Gouker, L.M. Johnson, E.A. Dauler, M.A. Gouker, Large scale cryogenic integration approach for superconducting high-performance computing, in Proceedings of the IEEE Electronic Components and Technology Conference (2017), pp. 675–683 R.N. Das, V. Bolkhovsky, S.K. Tolpygo, P. Gouker, L.M. Johnson, E.A. Dauler, M.A. Gouker, Large scale cryogenic integration approach for superconducting high-performance computing, in Proceedings of the IEEE Electronic Components and Technology Conference (2017), pp. 675–683
600.
Zurück zum Zitat Y. Mizugaki, A. Kawai, R. Kashiwa, M. Moriya, T. Kobayashi, Mutual coupling between two superconducting strip lines horizontally-placed in niobium integrated chips. J. Phys. Conf. Ser. 234(4), 042021 (2010) Y. Mizugaki, A. Kawai, R. Kashiwa, M. Moriya, T. Kobayashi, Mutual coupling between two superconducting strip lines horizontally-placed in niobium integrated chips. J. Phys. Conf. Ser. 234(4), 042021 (2010)
601.
Zurück zum Zitat B. Chonigman, A. Shukla, M. Habib, V. Gupta, D. Kirichenko A. Talalaevskii, A. Sahu, A. Inamdar, D. Gupta, Optimization of passive transmission lines for single flux quantum circuits. IEEE Trans. Appl. Supercond. 31(5), 1–6 (2021)CrossRef B. Chonigman, A. Shukla, M. Habib, V. Gupta, D. Kirichenko A. Talalaevskii, A. Sahu, A. Inamdar, D. Gupta, Optimization of passive transmission lines for single flux quantum circuits. IEEE Trans. Appl. Supercond. 31(5), 1–6 (2021)CrossRef
602.
Zurück zum Zitat T. Yamamoto, K. Inomata, K. Koshino, P-M. Billangeon, Y. Nakamura, J.S. Tsai, Superconducting flux qubit capacitively coupled to an LC resonator. New J. Phys. 16, 015017 (2014)CrossRef T. Yamamoto, K. Inomata, K. Koshino, P-M. Billangeon, Y. Nakamura, J.S. Tsai, Superconducting flux qubit capacitively coupled to an LC resonator. New J. Phys. 16, 015017 (2014)CrossRef
603.
Zurück zum Zitat Y.I. Ismail, E.G. Friedman, J.L. Neves, Dynamic and short-circuit power of CMOS gates driving lossless transmission lines. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 46(8), 950–961 (1999)CrossRef Y.I. Ismail, E.G. Friedman, J.L. Neves, Dynamic and short-circuit power of CMOS gates driving lossless transmission lines. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 46(8), 950–961 (1999)CrossRef
Metadaten
Titel
Inductive and Capacitive Coupling Noise in Superconductive VLSI Circuits
verfasst von
Gleb Krylov
Tahereh Jabbari
Eby G. Friedman
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-47475-0_27

Neuer Inhalt