Skip to main content
Top

2024 | OriginalPaper | Chapter

Modeling Treatment Effect with Cross-Domain Data

Authors : Bin Han, Ya-Lin Zhang, Lu Yu, Biying Chen, Longfei Li, Jun Zhou

Published in: Advances in Knowledge Discovery and Data Mining

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Treatment effect estimation has received increasing attention recently. However, the issue of data sparsity often poses a significant challenge, limiting the feasibility of modeling. This paper aims to leverage cross-domain data to mitigate the data sparsity issue, and presents a framework called TEC. TEC incorporates a collaborative and adversarial generalization module to enhance information sharing and transferability across domains. This module encourages the learned representations of different domains to be more cohesive, thereby improving the generalizability of the models. Furthermore, we address the issue of poor performance for few-shot samples in each domain, and propose a pattern augmentation module that explicitly borrows samples from other domains and applies the self-teaching philosophy to them. Extensive experiments are conducted on both synthetic and benchmark datasets to demonstrate the superiority of the proposed framework.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
We use a classification threshold of 0.5 for explanation purposes.
 
2
Due to commercial confidentiality, we omit some details here and below.
 
Literature
1.
2.
go back to reference Battocchi, K., et al.: EconML: A python package for ml-based heterogeneous treatment effects estimation (2019) Battocchi, K., et al.: EconML: A python package for ml-based heterogeneous treatment effects estimation (2019)
3.
go back to reference Bica, I., van der Schaar, M.: Transfer learning on heterogeneous feature spaces for treatment effects estimation. In: NeurIPS (2022) Bica, I., van der Schaar, M.: Transfer learning on heterogeneous feature spaces for treatment effects estimation. In: NeurIPS (2022)
4.
go back to reference Dahabreh, I.J., et al.: Study designs for extending causal inferences from a randomized trial to a target population. Am. J. Epidemiol. 190(8), 1632–1642 (2021)CrossRef Dahabreh, I.J., et al.: Study designs for extending causal inferences from a randomized trial to a target population. Am. J. Epidemiol. 190(8), 1632–1642 (2021)CrossRef
5.
go back to reference Dorie, V., Hill, J., Shalit, U., Scott, M., Cervone, D.: Automated versus do-it-yourself methods for causal inference: lessons learned from a data analysis competition. Stat. Sci. 34(1), 43–68 (2019)MathSciNetCrossRef Dorie, V., Hill, J., Shalit, U., Scott, M., Cervone, D.: Automated versus do-it-yourself methods for causal inference: lessons learned from a data analysis competition. Stat. Sci. 34(1), 43–68 (2019)MathSciNetCrossRef
6.
go back to reference Hassanpour, N., Greiner, R.: Learning disentangled representations for counterfactual regression. In: ICLR (2020) Hassanpour, N., Greiner, R.: Learning disentangled representations for counterfactual regression. In: ICLR (2020)
7.
go back to reference Hatt, T., Berrevoets, J., Curth, A., Feuerriegel, S., van der Schaar, M.: Combining observational and randomized data for estimating heterogeneous treatment effects (2022). arXiv:2202.12891 Hatt, T., Berrevoets, J., Curth, A., Feuerriegel, S., van der Schaar, M.: Combining observational and randomized data for estimating heterogeneous treatment effects (2022). arXiv:​2202.​12891
8.
go back to reference Huang, Q., Ma, J., Li, J., Sun, H., Chang, Y.: SemiiTE: semi-supervised individual treatment effect estimation via disagreement-based co-training. In: ECML PKDD, pp. 400–417 (2023) Huang, Q., Ma, J., Li, J., Sun, H., Chang, Y.: SemiiTE: semi-supervised individual treatment effect estimation via disagreement-based co-training. In: ECML PKDD, pp. 400–417 (2023)
9.
go back to reference Johansson, F., Shalit, U., Sontag, D.: Learning representations for counterfactual inference. In: ICML, pp. 3020–3029 (2016) Johansson, F., Shalit, U., Sontag, D.: Learning representations for counterfactual inference. In: ICML, pp. 3020–3029 (2016)
11.
go back to reference Künzel, S.R., Sekhon, J.S., Bickel, P.J., Yu, B.: Meta-learners for estimating heterogeneous treatment effects using machine learning. PNAS 116(10), 4156–4165 (2019)CrossRef Künzel, S.R., Sekhon, J.S., Bickel, P.J., Yu, B.: Meta-learners for estimating heterogeneous treatment effects using machine learning. PNAS 116(10), 4156–4165 (2019)CrossRef
12.
go back to reference Kyono, T., Bica, I., Qian, Z., van der Schaar, M.: Selecting treatment effects models for domain adaptation using causal knowledge. Health 4(2), 1–29 (2023) Kyono, T., Bica, I., Qian, Z., van der Schaar, M.: Selecting treatment effects models for domain adaptation using causal knowledge. Health 4(2), 1–29 (2023)
13.
go back to reference Pearl, J.: Causality. Cambridge University Press, Cambridge (2009) Pearl, J.: Causality. Cambridge University Press, Cambridge (2009)
14.
go back to reference Powers, S., et al.: Some methods for heterogeneous treatment effect estimation in high-dimensions. Stat. Med. 37(11), 1767–1787 (2018)MathSciNetCrossRef Powers, S., et al.: Some methods for heterogeneous treatment effect estimation in high-dimensions. Stat. Med. 37(11), 1767–1787 (2018)MathSciNetCrossRef
15.
go back to reference Rosenbaum, P.R.: Model-based direct adjustment. JASA 82(398), 387–394 (1987)CrossRef Rosenbaum, P.R.: Model-based direct adjustment. JASA 82(398), 387–394 (1987)CrossRef
16.
go back to reference Rosenbaum, P.R., Rubin, D.B.: The central role of the propensity score in observational studies for causal effects. Biometrika 70(1), 41–55 (1983)MathSciNetCrossRef Rosenbaum, P.R., Rubin, D.B.: The central role of the propensity score in observational studies for causal effects. Biometrika 70(1), 41–55 (1983)MathSciNetCrossRef
17.
go back to reference Rubin, D.B.: Causal inference using potential outcomes: design, modeling, decisions. JASA 100(469), 322–331 (2005)MathSciNetCrossRef Rubin, D.B.: Causal inference using potential outcomes: design, modeling, decisions. JASA 100(469), 322–331 (2005)MathSciNetCrossRef
18.
go back to reference Shalit, U., Johansson, F.D., Sontag, D.: Estimating individual treatment effect: generalization bounds and algorithms. In: ICML, pp. 3076–3085 (2017) Shalit, U., Johansson, F.D., Sontag, D.: Estimating individual treatment effect: generalization bounds and algorithms. In: ICML, pp. 3076–3085 (2017)
19.
go back to reference Shi, C., Blei, D., Veitch, V.: Adapting neural networks for the estimation of treatment effects. In: NeurIPS, vol. 32 (2019) Shi, C., Blei, D., Veitch, V.: Adapting neural networks for the estimation of treatment effects. In: NeurIPS, vol. 32 (2019)
20.
go back to reference Sun, Y., Zhang, Y., Wang, W., Li, L., Zhou, J.: Treatment effect estimation across domains. In: CIKM, pp. 2352—2361 (2023) Sun, Y., Zhang, Y., Wang, W., Li, L., Zhou, J.: Treatment effect estimation across domains. In: CIKM, pp. 2352—2361 (2023)
21.
go back to reference Tang, C., et al.: Debiased causal tree: heterogeneous treatment effects estimation with unmeasured confounding. In: NeurIPS, vol. 35 (2022) Tang, C., et al.: Debiased causal tree: heterogeneous treatment effects estimation with unmeasured confounding. In: NeurIPS, vol. 35 (2022)
22.
go back to reference Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: NeurIPS, vol. 30 (2017) Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: NeurIPS, vol. 30 (2017)
23.
go back to reference Yao, L., Chu, Z., Li, S., Li, Y., Gao, J., Zhang, A.: A survey on causal inference. TKDD 15(5), 1–46 (2021)CrossRef Yao, L., Chu, Z., Li, S., Li, Y., Gao, J., Zhang, A.: A survey on causal inference. TKDD 15(5), 1–46 (2021)CrossRef
24.
go back to reference Yao, L., Li, S., Li, Y., Huai, M., Gao, J., Zhang, A.: Representation learning for treatment effect estimation from observational data. In: NeurIPS, vol. 31 (2018) Yao, L., Li, S., Li, Y., Huai, M., Gao, J., Zhang, A.: Representation learning for treatment effect estimation from observational data. In: NeurIPS, vol. 31 (2018)
25.
go back to reference Zhang, Y., Zhou, J., Shi, Q., Li, L.: Exploring the combination of self and mutual teaching for tabular-data-related semi-supervised regression. ESWA 213, 118931 (2023) Zhang, Y., Zhou, J., Shi, Q., Li, L.: Exploring the combination of self and mutual teaching for tabular-data-related semi-supervised regression. ESWA 213, 118931 (2023)
26.
go back to reference Zhang, Y., et al.: A backcasting framework for approximating macro-outcome via micro-treatment. SSRN 4494664 (2023) Zhang, Y., et al.: A backcasting framework for approximating macro-outcome via micro-treatment. SSRN 4494664 (2023)
Metadata
Title
Modeling Treatment Effect with Cross-Domain Data
Authors
Bin Han
Ya-Lin Zhang
Lu Yu
Biying Chen
Longfei Li
Jun Zhou
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-2242-6_29

Premium Partner