Skip to main content

2024 | OriginalPaper | Buchkapitel

Modeling Treatment Effect with Cross-Domain Data

verfasst von : Bin Han, Ya-Lin Zhang, Lu Yu, Biying Chen, Longfei Li, Jun Zhou

Erschienen in: Advances in Knowledge Discovery and Data Mining

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Treatment effect estimation has received increasing attention recently. However, the issue of data sparsity often poses a significant challenge, limiting the feasibility of modeling. This paper aims to leverage cross-domain data to mitigate the data sparsity issue, and presents a framework called TEC. TEC incorporates a collaborative and adversarial generalization module to enhance information sharing and transferability across domains. This module encourages the learned representations of different domains to be more cohesive, thereby improving the generalizability of the models. Furthermore, we address the issue of poor performance for few-shot samples in each domain, and propose a pattern augmentation module that explicitly borrows samples from other domains and applies the self-teaching philosophy to them. Extensive experiments are conducted on both synthetic and benchmark datasets to demonstrate the superiority of the proposed framework.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
We use a classification threshold of 0.5 for explanation purposes.
 
2
Due to commercial confidentiality, we omit some details here and below.
 
Literatur
1.
Zurück zum Zitat Athey, S., Imbens, G.: Recursive partitioning for heterogeneous causal effects. PNAS 113(27), 7353–7360 (2016)MathSciNetCrossRef Athey, S., Imbens, G.: Recursive partitioning for heterogeneous causal effects. PNAS 113(27), 7353–7360 (2016)MathSciNetCrossRef
2.
Zurück zum Zitat Battocchi, K., et al.: EconML: A python package for ml-based heterogeneous treatment effects estimation (2019) Battocchi, K., et al.: EconML: A python package for ml-based heterogeneous treatment effects estimation (2019)
3.
Zurück zum Zitat Bica, I., van der Schaar, M.: Transfer learning on heterogeneous feature spaces for treatment effects estimation. In: NeurIPS (2022) Bica, I., van der Schaar, M.: Transfer learning on heterogeneous feature spaces for treatment effects estimation. In: NeurIPS (2022)
4.
Zurück zum Zitat Dahabreh, I.J., et al.: Study designs for extending causal inferences from a randomized trial to a target population. Am. J. Epidemiol. 190(8), 1632–1642 (2021)CrossRef Dahabreh, I.J., et al.: Study designs for extending causal inferences from a randomized trial to a target population. Am. J. Epidemiol. 190(8), 1632–1642 (2021)CrossRef
5.
Zurück zum Zitat Dorie, V., Hill, J., Shalit, U., Scott, M., Cervone, D.: Automated versus do-it-yourself methods for causal inference: lessons learned from a data analysis competition. Stat. Sci. 34(1), 43–68 (2019)MathSciNetCrossRef Dorie, V., Hill, J., Shalit, U., Scott, M., Cervone, D.: Automated versus do-it-yourself methods for causal inference: lessons learned from a data analysis competition. Stat. Sci. 34(1), 43–68 (2019)MathSciNetCrossRef
6.
Zurück zum Zitat Hassanpour, N., Greiner, R.: Learning disentangled representations for counterfactual regression. In: ICLR (2020) Hassanpour, N., Greiner, R.: Learning disentangled representations for counterfactual regression. In: ICLR (2020)
7.
Zurück zum Zitat Hatt, T., Berrevoets, J., Curth, A., Feuerriegel, S., van der Schaar, M.: Combining observational and randomized data for estimating heterogeneous treatment effects (2022). arXiv:2202.12891 Hatt, T., Berrevoets, J., Curth, A., Feuerriegel, S., van der Schaar, M.: Combining observational and randomized data for estimating heterogeneous treatment effects (2022). arXiv:​2202.​12891
8.
Zurück zum Zitat Huang, Q., Ma, J., Li, J., Sun, H., Chang, Y.: SemiiTE: semi-supervised individual treatment effect estimation via disagreement-based co-training. In: ECML PKDD, pp. 400–417 (2023) Huang, Q., Ma, J., Li, J., Sun, H., Chang, Y.: SemiiTE: semi-supervised individual treatment effect estimation via disagreement-based co-training. In: ECML PKDD, pp. 400–417 (2023)
9.
Zurück zum Zitat Johansson, F., Shalit, U., Sontag, D.: Learning representations for counterfactual inference. In: ICML, pp. 3020–3029 (2016) Johansson, F., Shalit, U., Sontag, D.: Learning representations for counterfactual inference. In: ICML, pp. 3020–3029 (2016)
11.
Zurück zum Zitat Künzel, S.R., Sekhon, J.S., Bickel, P.J., Yu, B.: Meta-learners for estimating heterogeneous treatment effects using machine learning. PNAS 116(10), 4156–4165 (2019)CrossRef Künzel, S.R., Sekhon, J.S., Bickel, P.J., Yu, B.: Meta-learners for estimating heterogeneous treatment effects using machine learning. PNAS 116(10), 4156–4165 (2019)CrossRef
12.
Zurück zum Zitat Kyono, T., Bica, I., Qian, Z., van der Schaar, M.: Selecting treatment effects models for domain adaptation using causal knowledge. Health 4(2), 1–29 (2023) Kyono, T., Bica, I., Qian, Z., van der Schaar, M.: Selecting treatment effects models for domain adaptation using causal knowledge. Health 4(2), 1–29 (2023)
13.
Zurück zum Zitat Pearl, J.: Causality. Cambridge University Press, Cambridge (2009) Pearl, J.: Causality. Cambridge University Press, Cambridge (2009)
14.
Zurück zum Zitat Powers, S., et al.: Some methods for heterogeneous treatment effect estimation in high-dimensions. Stat. Med. 37(11), 1767–1787 (2018)MathSciNetCrossRef Powers, S., et al.: Some methods for heterogeneous treatment effect estimation in high-dimensions. Stat. Med. 37(11), 1767–1787 (2018)MathSciNetCrossRef
15.
Zurück zum Zitat Rosenbaum, P.R.: Model-based direct adjustment. JASA 82(398), 387–394 (1987)CrossRef Rosenbaum, P.R.: Model-based direct adjustment. JASA 82(398), 387–394 (1987)CrossRef
16.
Zurück zum Zitat Rosenbaum, P.R., Rubin, D.B.: The central role of the propensity score in observational studies for causal effects. Biometrika 70(1), 41–55 (1983)MathSciNetCrossRef Rosenbaum, P.R., Rubin, D.B.: The central role of the propensity score in observational studies for causal effects. Biometrika 70(1), 41–55 (1983)MathSciNetCrossRef
17.
Zurück zum Zitat Rubin, D.B.: Causal inference using potential outcomes: design, modeling, decisions. JASA 100(469), 322–331 (2005)MathSciNetCrossRef Rubin, D.B.: Causal inference using potential outcomes: design, modeling, decisions. JASA 100(469), 322–331 (2005)MathSciNetCrossRef
18.
Zurück zum Zitat Shalit, U., Johansson, F.D., Sontag, D.: Estimating individual treatment effect: generalization bounds and algorithms. In: ICML, pp. 3076–3085 (2017) Shalit, U., Johansson, F.D., Sontag, D.: Estimating individual treatment effect: generalization bounds and algorithms. In: ICML, pp. 3076–3085 (2017)
19.
Zurück zum Zitat Shi, C., Blei, D., Veitch, V.: Adapting neural networks for the estimation of treatment effects. In: NeurIPS, vol. 32 (2019) Shi, C., Blei, D., Veitch, V.: Adapting neural networks for the estimation of treatment effects. In: NeurIPS, vol. 32 (2019)
20.
Zurück zum Zitat Sun, Y., Zhang, Y., Wang, W., Li, L., Zhou, J.: Treatment effect estimation across domains. In: CIKM, pp. 2352—2361 (2023) Sun, Y., Zhang, Y., Wang, W., Li, L., Zhou, J.: Treatment effect estimation across domains. In: CIKM, pp. 2352—2361 (2023)
21.
Zurück zum Zitat Tang, C., et al.: Debiased causal tree: heterogeneous treatment effects estimation with unmeasured confounding. In: NeurIPS, vol. 35 (2022) Tang, C., et al.: Debiased causal tree: heterogeneous treatment effects estimation with unmeasured confounding. In: NeurIPS, vol. 35 (2022)
22.
Zurück zum Zitat Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: NeurIPS, vol. 30 (2017) Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: NeurIPS, vol. 30 (2017)
23.
Zurück zum Zitat Yao, L., Chu, Z., Li, S., Li, Y., Gao, J., Zhang, A.: A survey on causal inference. TKDD 15(5), 1–46 (2021)CrossRef Yao, L., Chu, Z., Li, S., Li, Y., Gao, J., Zhang, A.: A survey on causal inference. TKDD 15(5), 1–46 (2021)CrossRef
24.
Zurück zum Zitat Yao, L., Li, S., Li, Y., Huai, M., Gao, J., Zhang, A.: Representation learning for treatment effect estimation from observational data. In: NeurIPS, vol. 31 (2018) Yao, L., Li, S., Li, Y., Huai, M., Gao, J., Zhang, A.: Representation learning for treatment effect estimation from observational data. In: NeurIPS, vol. 31 (2018)
25.
Zurück zum Zitat Zhang, Y., Zhou, J., Shi, Q., Li, L.: Exploring the combination of self and mutual teaching for tabular-data-related semi-supervised regression. ESWA 213, 118931 (2023) Zhang, Y., Zhou, J., Shi, Q., Li, L.: Exploring the combination of self and mutual teaching for tabular-data-related semi-supervised regression. ESWA 213, 118931 (2023)
26.
Zurück zum Zitat Zhang, Y., et al.: A backcasting framework for approximating macro-outcome via micro-treatment. SSRN 4494664 (2023) Zhang, Y., et al.: A backcasting framework for approximating macro-outcome via micro-treatment. SSRN 4494664 (2023)
Metadaten
Titel
Modeling Treatment Effect with Cross-Domain Data
verfasst von
Bin Han
Ya-Lin Zhang
Lu Yu
Biying Chen
Longfei Li
Jun Zhou
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-2242-6_29

Premium Partner