Skip to main content
Top

2024 | OriginalPaper | Chapter

3. Superconductive IC Manufacturing

Authors : Gleb Krylov, Tahereh Jabbari, Eby G. Friedman

Published in: Single Flux Quantum Integrated Circuit Design

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Manufacturing integrated circuits is a complex and intricate process, both for semiconductor and superconductive electronics. Despite the minimum feature size and number of layers in modern SCE technology being less deeply scaled as compared to semiconductor technologies, numerous challenges exist in manufacturing superconductive electronics. The materials used during the different fabrication steps interact in complex mechanical, chemical, and electrical ways, requiring adjustments to the manufacturing process. These issues are exacerbated by the high sensitivity of superconductive circuits to process variations. In this chapter, the different steps and materials used in the manufacturing process of superconductive circuits are described. Challenges unique to superconductive electronics are highlighted. Important features of modern superconductive fabrication technologies are discussed and compared to the fabrication of semiconductor-based integrated circuits.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
22.
go back to reference T. Jabbari, F. Shanehsazzadeh, H. Zandi, M. Banzet, J. Schubert, M. Fardmanesh, Effects of the design parameters on characteristics of the inductances and JJs in HTS RSFQ circuits. IEEE Trans. Appl. Supercond. 28(7), 1–4 (2018)CrossRef T. Jabbari, F. Shanehsazzadeh, H. Zandi, M. Banzet, J. Schubert, M. Fardmanesh, Effects of the design parameters on characteristics of the inductances and JJs in HTS RSFQ circuits. IEEE Trans. Appl. Supercond. 28(7), 1–4 (2018)CrossRef
25.
go back to reference K.K. Likharev, V.K. Semenov, RSFQ logic/memory family: a new Josephson-junction technology for sub-terahertz-clock-frequency digital systems. IEEE Trans. Appl. Supercond. 1(1), 3–28 (1991)CrossRef K.K. Likharev, V.K. Semenov, RSFQ logic/memory family: a new Josephson-junction technology for sub-terahertz-clock-frequency digital systems. IEEE Trans. Appl. Supercond. 1(1), 3–28 (1991)CrossRef
38.
go back to reference S. Whiteley, E. Mlinar, G. Krylov, T. Jabbari, E.G. Friedman, J. Kawa, An SFQ digital circuit technology with fully-passive transmission line interconnect, in Proceedings of the Applied Superconductivity Conference (2020) S. Whiteley, E. Mlinar, G. Krylov, T. Jabbari, E.G. Friedman, J. Kawa, An SFQ digital circuit technology with fully-passive transmission line interconnect, in Proceedings of the Applied Superconductivity Conference (2020)
41.
go back to reference T. Jabbari, E.G. Friedman, Global interconnects in VLSI complexity single flux quantum systems, in Proceedings of the Workshop on System-Level Interconnect: Problems and Pathfinding Workshop (2020), pp. 1–7 T. Jabbari, E.G. Friedman, Global interconnects in VLSI complexity single flux quantum systems, in Proceedings of the Workshop on System-Level Interconnect: Problems and Pathfinding Workshop (2020), pp. 1–7
42.
go back to reference T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Repeater insertion in SFQ interconnect. IEEE Trans. Appl. Supercond. 30(8), 5400508 (2020) T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Repeater insertion in SFQ interconnect. IEEE Trans. Appl. Supercond. 30(8), 5400508 (2020)
56.
go back to reference T. Jabbari, M. Bocko, E.G. Friedman, All-JJ logic based on bistable JJs. IEEE Trans. Appl. Supercond. 33(5), 1–7 (2023) T. Jabbari, M. Bocko, E.G. Friedman, All-JJ logic based on bistable JJs. IEEE Trans. Appl. Supercond. 33(5), 1–7 (2023)
57.
go back to reference T. Jabbari, E.G. Friedman, Transmission lines in VLSI complexity single flux quantum systems, in Proceedings of the PhotonIcs and Electromagnetics Research Symposium (2023), pp. 1749–1759 T. Jabbari, E.G. Friedman, Transmission lines in VLSI complexity single flux quantum systems, in Proceedings of the PhotonIcs and Electromagnetics Research Symposium (2023), pp. 1749–1759
59.
go back to reference T. Jabbari, J. Kawa, E.G. Friedman, H-tree clock synthesis in RSFQ circuits, in Proceedings of the IEEE Baltic Electronics Conference (2020), pp. 1–5 T. Jabbari, J. Kawa, E.G. Friedman, H-tree clock synthesis in RSFQ circuits, in Proceedings of the IEEE Baltic Electronics Conference (2020), pp. 1–5
60.
go back to reference T. Jabbari, G. Krylov, J Kawa, E.G. Friedman, Splitter trees in single flux quantum circuits. IEEE Trans. Appl. Supercond. 31(5), 1302606 (2021) T. Jabbari, G. Krylov, J Kawa, E.G. Friedman, Splitter trees in single flux quantum circuits. IEEE Trans. Appl. Supercond. 31(5), 1302606 (2021)
61.
go back to reference T. Jabbari, E.G. Friedman, Flux mitigation in wide superconductive striplines. IEEE Trans. Appl. Supercond. 32(3), 1–6 (2022)CrossRef T. Jabbari, E.G. Friedman, Flux mitigation in wide superconductive striplines. IEEE Trans. Appl. Supercond. 32(3), 1–6 (2022)CrossRef
63.
go back to reference T. Jabbari, E.G. Friedman, Stripline topology for flux mitigation. IEEE Trans. Appl. Supercond. 335, 1–4 (2023) T. Jabbari, E.G. Friedman, Stripline topology for flux mitigation. IEEE Trans. Appl. Supercond. 335, 1–4 (2023)
65.
go back to reference T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Resonance effects in single flux quantum interconnect, in Proceedings of the Government Microcircuit Applications and Critical Technology Conference (2020), pp. 1–5 T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Resonance effects in single flux quantum interconnect, in Proceedings of the Government Microcircuit Applications and Critical Technology Conference (2020), pp. 1–5
87.
go back to reference T. Jabbari, E.G. Friedman, Surface inductance of superconductive striplines. IEEE Trans. Circuits Syst. II Express Briefs 69(6), 2952–2956 (2022) T. Jabbari, E.G. Friedman, Surface inductance of superconductive striplines. IEEE Trans. Circuits Syst. II Express Briefs 69(6), 2952–2956 (2022)
91.
go back to reference S.K. Tolpygo, Superconductor digital electronics: scalability and energy efficiency issues. Low Temp. Phys. 42(5), 361–379 (2016)CrossRef S.K. Tolpygo, Superconductor digital electronics: scalability and energy efficiency issues. Low Temp. Phys. 42(5), 361–379 (2016)CrossRef
95.
go back to reference C.M. Natarajan, M.G. Tanner, R.H. Hadfield, Superconducting nanowire single-photon detectors: physics and applications. Supercond. Sci. Technol. 25(6), 063001 (2012) C.M. Natarajan, M.G. Tanner, R.H. Hadfield, Superconducting nanowire single-photon detectors: physics and applications. Supercond. Sci. Technol. 25(6), 063001 (2012)
98.
go back to reference G. Krylov, E.G. Friedman, Sense amplifier for spin-based cryogenic memory cells. IEEE Trans. Appl. Supercond. 29(5), 1–4 (2019). Art no. 1501804 G. Krylov, E.G. Friedman, Sense amplifier for spin-based cryogenic memory cells. IEEE Trans. Appl. Supercond. 29(5), 1–4 (2019). Art no. 1501804
104.
go back to reference G. Krylov, E.G. Friedman, Behavioral verilog-A model of superconductor-ferromagnetic transistor, in Proceedings of the IEEE International Symposium on Circuits and Systems (2018) G. Krylov, E.G. Friedman, Behavioral verilog-A model of superconductor-ferromagnetic transistor, in Proceedings of the IEEE International Symposium on Circuits and Systems (2018)
106.
go back to reference S.K Tolpygo, V. Bolkhovsky, R. Rastogi, S. Zarr, A.L. Day, E. Golden, T.J. Weir, A. Wynn, L.M. Johnson, Advanced fabrication processes for superconductor electronics: current status and new developments. IEEE Trans. Appl. Supercond. 29(5), 1–13 (2019) S.K Tolpygo, V. Bolkhovsky, R. Rastogi, S. Zarr, A.L. Day, E. Golden, T.J. Weir, A. Wynn, L.M. Johnson, Advanced fabrication processes for superconductor electronics: current status and new developments. IEEE Trans. Appl. Supercond. 29(5), 1–13 (2019)
107.
go back to reference T. Ando, S. Nagasawa, N. Takeuchi, N. Tsuji, F. China, M. Hidaka, Y. Yamanashi, N. Yoshikawa, Three-dimensional adiabatic quantum-flux-parametron fabricated using a double-active-layered niobium process. Supercond. Sci. Technol. 30(7), 075003 (2017) T. Ando, S. Nagasawa, N. Takeuchi, N. Tsuji, F. China, M. Hidaka, Y. Yamanashi, N. Yoshikawa, Three-dimensional adiabatic quantum-flux-parametron fabricated using a double-active-layered niobium process. Supercond. Sci. Technol. 30(7), 075003 (2017)
108.
go back to reference D.T. Yohannes, R.T. Hunt, J.A. Vivalda, D. Amparo, A. Cohen, I.V. Vernik, A.F. Kirichenko, Planarized, extendible, multilayer fabrication process for superconducting electronics. IEEE Trans. Appl. Supercond. 25(3), 1–5 (2015)CrossRef D.T. Yohannes, R.T. Hunt, J.A. Vivalda, D. Amparo, A. Cohen, I.V. Vernik, A.F. Kirichenko, Planarized, extendible, multilayer fabrication process for superconducting electronics. IEEE Trans. Appl. Supercond. 25(3), 1–5 (2015)CrossRef
109.
go back to reference D. Yohannes, S. Sarwana, S.K. Tolpygo, A. Sahu, Y.A. Polyakov, V.K. Semenov, Characterization of HYPRES’ 4.5 \(kA/cm^2\) & 8 \(kA/cm^2\)\(Nb/AlO_x/Nb\) fabrication processes. IEEE Trans. Appl. Supercond. 15(2), 90–93 (2005) D. Yohannes, S. Sarwana, S.K. Tolpygo, A. Sahu, Y.A. Polyakov, V.K. Semenov, Characterization of HYPRES’ 4.5 \(kA/cm^2\) & 8 \(kA/cm^2\)\(Nb/AlO_x/Nb\) fabrication processes. IEEE Trans. Appl. Supercond. 15(2), 90–93 (2005)
110.
go back to reference G. Krylov, E.G. Friedman, Partitioning RSFQ circuits for current recycling. IEEE Trans. Appl. Supercond. 31(5), 1–6 (2021)CrossRef G. Krylov, E.G. Friedman, Partitioning RSFQ circuits for current recycling. IEEE Trans. Appl. Supercond. 31(5), 1–6 (2021)CrossRef
111.
go back to reference S.K. Tolpygo, V. Bolkhovsky, T.J. Weir, A. Wynn, D.E. Oates, L.M. Johnson, M.A. Gouker, Advanced fabrication processes for superconducting very large-scale integrated circuits. IEEE Trans. Appl. Supercond. 26(3), 1–10 (2016)CrossRef S.K. Tolpygo, V. Bolkhovsky, T.J. Weir, A. Wynn, D.E. Oates, L.M. Johnson, M.A. Gouker, Advanced fabrication processes for superconducting very large-scale integrated circuits. IEEE Trans. Appl. Supercond. 26(3), 1–10 (2016)CrossRef
112.
go back to reference F. Bedard, N. Welker, G.R. Gotter, M.A. Escavage, J.T. Pinkston, Superconducting Technology Assessment (National Security Agency, Office of Corporate Assessments, Fort Meade, Maryland, 2005) F. Bedard, N. Welker, G.R. Gotter, M.A. Escavage, J.T. Pinkston, Superconducting Technology Assessment (National Security Agency, Office of Corporate Assessments, Fort Meade, Maryland, 2005)
113.
go back to reference J.M. Murduck, Fabrication of Superconducting Devices and Circuits. Frontiers of Thin Film Technology (Elsevier, Amsterdam, 2001)CrossRef J.M. Murduck, Fabrication of Superconducting Devices and Circuits. Frontiers of Thin Film Technology (Elsevier, Amsterdam, 2001)CrossRef
114.
go back to reference Y. Tarutani, M. Hirano, U. Kawabe, Niobium-based integrated circuit technologies. Proc. IEEE 77(8), 1164–1176 (1989)CrossRef Y. Tarutani, M. Hirano, U. Kawabe, Niobium-based integrated circuit technologies. Proc. IEEE 77(8), 1164–1176 (1989)CrossRef
115.
go back to reference E.L. Wolf, Introduction to refractory Josephson junctions, in Josephson Junctions: History, Devices, and Applications, ed. by E.L. Wolf, G.B. Arnold, M.A. Gurvitch, J.F. Zasadzinski, Chapter 2 (Pan Stanford Publishing Pte. Ltd., Singapore, 2017), pp. 17–46 E.L. Wolf, Introduction to refractory Josephson junctions, in Josephson Junctions: History, Devices, and Applications, ed. by E.L. Wolf, G.B. Arnold, M.A. Gurvitch, J.F. Zasadzinski, Chapter 2 (Pan Stanford Publishing Pte. Ltd., Singapore, 2017), pp. 17–46
116.
go back to reference M.A. Gurvitch, The trace that launched a thousand chips: development of Nb/Al–Oxide–Nb technology, in Josephson Junctions: History, Devices, and Applications, ed. by E.L. Wolf, G.B. Arnold, M.A. Gurvitch, J. F. Zasadzinski, Chapter 5 (Pan Stanford Publishing Pte. Ltd., Singapore, 2017), pp. 83–146 M.A. Gurvitch, The trace that launched a thousand chips: development of Nb/Al–Oxide–Nb technology, in Josephson Junctions: History, Devices, and Applications, ed. by E.L. Wolf, G.B. Arnold, M.A. Gurvitch, J. F. Zasadzinski, Chapter 5 (Pan Stanford Publishing Pte. Ltd., Singapore, 2017), pp. 83–146
117.
go back to reference A.L. Robinson, New superconductors for a supercomputer. Science 215(4528), 40–43 (1982)CrossRef A.L. Robinson, New superconductors for a supercomputer. Science 215(4528), 40–43 (1982)CrossRef
118.
go back to reference I. Ames, An overview of materials and process aspects of Josephson integrated circuit fabrication. IBM J. Res. Develop. 24(2), 188–194 (1980)CrossRef I. Ames, An overview of materials and process aspects of Josephson integrated circuit fabrication. IBM J. Res. Develop. 24(2), 188–194 (1980)CrossRef
119.
go back to reference I. Giaever, Energy gap in superconductors measured by electron tunneling. Phys. Rev. Lett. 5, 147–148 (1960)CrossRef I. Giaever, Energy gap in superconductors measured by electron tunneling. Phys. Rev. Lett. 5, 147–148 (1960)CrossRef
120.
go back to reference I.P. Litikov, O.A. Mukhanov, Loop self-testing of Josephson junction digital structures, in Avtomatika i Vychislitelnaya Tekhnika [Soviet Automatics and Computers], No. 1 (1988), pp. 70–78 I.P. Litikov, O.A. Mukhanov, Loop self-testing of Josephson junction digital structures, in Avtomatika i Vychislitelnaya Tekhnika [Soviet Automatics and Computers], No. 1 (1988), pp. 70–78
121.
go back to reference D. Shen, R. Zhu, W. Xu, J. Chang, Z. Ji, G. Sun, C. Cao, J. Chen, Character and fabrication of Al/\(Al_2 O_3\)/Al tunnel junctions for qubit application. Chin. Sci. Bull. 57(4), 409–412 (2012) D. Shen, R. Zhu, W. Xu, J. Chang, Z. Ji, G. Sun, C. Cao, J. Chen, Character and fabrication of Al/\(Al_2 O_3\)/Al tunnel junctions for qubit application. Chin. Sci. Bull. 57(4), 409–412 (2012)
122.
go back to reference D.R.W. Yost, M.E. Schwartz, J. Mallek, D. Rosenberg, C. Stull, J.L. Yoder, G. Calusine, M. Cook, R. Das, A.L. Day, E.B. Golden, D.K. Kim, A. Melville, B.M. Niedzielski, W. Woods, A.J. Kerman, W.D. Oliver, Solid-state qubits integrated with superconducting through-silicon vias. NPJ Quant. Inf. 6(1), 1–7 (2020) D.R.W. Yost, M.E. Schwartz, J. Mallek, D. Rosenberg, C. Stull, J.L. Yoder, G. Calusine, M. Cook, R. Das, A.L. Day, E.B. Golden, D.K. Kim, A. Melville, B.M. Niedzielski, W. Woods, A.J. Kerman, W.D. Oliver, Solid-state qubits integrated with superconducting through-silicon vias. NPJ Quant. Inf. 6(1), 1–7 (2020)
123.
go back to reference M. Gurvitch, M.A. Washington, H.A. Huggins, High quality refractory Josephson tunnel junctions utilizing thin aluminum layers. Appl. Phys. Lett. 42(5), 472–474 (1983)CrossRef M. Gurvitch, M.A. Washington, H.A. Huggins, High quality refractory Josephson tunnel junctions utilizing thin aluminum layers. Appl. Phys. Lett. 42(5), 472–474 (1983)CrossRef
124.
go back to reference Y. Uzawa, S. Saito, W. Qiu, K. Makise, T. Kojima, Z. Wang, Optical and tunneling studies of energy gap in superconducting niobium nitride films. J. Low Temp. Phys. 199, 143–148 (2020)CrossRef Y. Uzawa, S. Saito, W. Qiu, K. Makise, T. Kojima, Z. Wang, Optical and tunneling studies of energy gap in superconducting niobium nitride films. J. Low Temp. Phys. 199, 143–148 (2020)CrossRef
125.
go back to reference M.M.T.M. Dierichs, B.J. Feenstra, A. Skalare, C.E. Honingh, J. Mees, H.v.d. Stadt, Th. de Graauw, Evaluation of niobium transmission lines up to the superconducting gap frequency. Appl. Phys. Lett. 63(2), 249–251 (1993) M.M.T.M. Dierichs, B.J. Feenstra, A. Skalare, C.E. Honingh, J. Mees, H.v.d. Stadt, Th. de Graauw, Evaluation of niobium transmission lines up to the superconducting gap frequency. Appl. Phys. Lett. 63(2), 249–251 (1993)
126.
go back to reference K. Steinberg, M. Scheffler, M. Dressel, Quasiparticle response of superconducting aluminum to electromagnetic radiation. Phys. Rev. B 77, 214517 (2008)CrossRef K. Steinberg, M. Scheffler, M. Dressel, Quasiparticle response of superconducting aluminum to electromagnetic radiation. Phys. Rev. B 77, 214517 (2008)CrossRef
127.
go back to reference J.C. Villegier, Refractory niobium nitride NbN Josephson junctions and applications, in Josephson Junctions: History, Devices, and Applications, Chapter 6, ed. by E.L. Wolf, G.B. Arnold, M.A. Gurvitch, J.F. Zasadzinski (Pan Stanford Publishing Pte. Ltd., Singapore, 2017), pp. 147–183 J.C. Villegier, Refractory niobium nitride NbN Josephson junctions and applications, in Josephson Junctions: History, Devices, and Applications, Chapter 6, ed. by E.L. Wolf, G.B. Arnold, M.A. Gurvitch, J.F. Zasadzinski (Pan Stanford Publishing Pte. Ltd., Singapore, 2017), pp. 147–183
128.
go back to reference M. Radparvar, Superconducting niobium and niobium nitride processes for medium-scale integration applications. Cryogenics 35, 535–540 (1995)CrossRef M. Radparvar, Superconducting niobium and niobium nitride processes for medium-scale integration applications. Cryogenics 35, 535–540 (1995)CrossRef
129.
go back to reference S.K. Tolpygo, Scalability of superconductor electronics: limitations imposed by AC clock and flux bias transformers. IEEE Trans. Appl. Supercond. 33(2), 1–19 (2023)CrossRef S.K. Tolpygo, Scalability of superconductor electronics: limitations imposed by AC clock and flux bias transformers. IEEE Trans. Appl. Supercond. 33(2), 1–19 (2023)CrossRef
130.
go back to reference L.A. Abelson, G.L. Kerber, Superconductor integrated circuit fabrication technology. Proc. IEEE 92(10), 1517–1533 (2004)CrossRef L.A. Abelson, G.L. Kerber, Superconductor integrated circuit fabrication technology. Proc. IEEE 92(10), 1517–1533 (2004)CrossRef
131.
go back to reference G. Krylov, E.G. Friedman, Design methodology for distributed large-scale ERSFQ bias networks. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 28(11), 2438–2447 (2020) G. Krylov, E.G. Friedman, Design methodology for distributed large-scale ERSFQ bias networks. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 28(11), 2438–2447 (2020)
132.
go back to reference G. Krylov, E.G. Friedman, Asynchronous dynamic single flux quantum majority gates. IEEE Trans. Appl. Supercond. 30(5), 1–7 (2020). Art no. 1300907 G. Krylov, E.G. Friedman, Asynchronous dynamic single flux quantum majority gates. IEEE Trans. Appl. Supercond. 30(5), 1–7 (2020). Art no. 1300907
133.
go back to reference D.C. Rorer, D.G. Onn, H. Meyer, Thermodynamic properties of molybdenum in its superconducting and normal state. Phys. Rev. 138, A1661–A1668 (1965)CrossRef D.C. Rorer, D.G. Onn, H. Meyer, Thermodynamic properties of molybdenum in its superconducting and normal state. Phys. Rev. 138, A1661–A1668 (1965)CrossRef
134.
go back to reference T.H. Geballe, B.T. Matthias, E. Corenzwit, G.W. Hull, Superconductivity in molybdenum. Phys. Rev. Lett. 8, 313–313 (1962)CrossRef T.H. Geballe, B.T. Matthias, E. Corenzwit, G.W. Hull, Superconductivity in molybdenum. Phys. Rev. Lett. 8, 313–313 (1962)CrossRef
135.
go back to reference D. Yohannes, A. Kirichenko, S. Sarwana, S.K. Tolpygo, Parametric testing of HYPRES superconducting integrated circuit fabrication processes. IEEE Trans. Appl. Supercond. 17(2), 181–186 (2007)CrossRef D. Yohannes, A. Kirichenko, S. Sarwana, S.K. Tolpygo, Parametric testing of HYPRES superconducting integrated circuit fabrication processes. IEEE Trans. Appl. Supercond. 17(2), 181–186 (2007)CrossRef
136.
go back to reference S.K. Tolpygo, V. Bolkhovsky, T.J. Weir, L.M. Johnson, M.A. Gouker, W.D. Oliver, Fabrication process and properties of fully-planarized deep-submicron Nb/Al–\(\mathrm {AlO}_{\mathrm {x}}/\mathrm {Nb}\) Josephson junctions for VLSI circuits. IEEE Trans. Appl. Supercond. 25(3), 1–12 (2015) S.K. Tolpygo, V. Bolkhovsky, T.J. Weir, L.M. Johnson, M.A. Gouker, W.D. Oliver, Fabrication process and properties of fully-planarized deep-submicron Nb/Al–\(\mathrm {AlO}_{\mathrm {x}}/\mathrm {Nb}\) Josephson junctions for VLSI circuits. IEEE Trans. Appl. Supercond. 25(3), 1–12 (2015)
137.
go back to reference T. Jabbari, E.G. Friedman, Inductive and capacitive coupling noise in superconductive VLSI circuits. IEEE Trans. Appl. Supercond. 33(9), 3800707 (2023) T. Jabbari, E.G. Friedman, Inductive and capacitive coupling noise in superconductive VLSI circuits. IEEE Trans. Appl. Supercond. 33(9), 3800707 (2023)
138.
go back to reference M. Hatzakis, B.J. Canavello, J.M. Shaw, Single-step optical lift-off process. IBM J. Res. Develop. 24(4), 452–460 (1980)CrossRef M. Hatzakis, B.J. Canavello, J.M. Shaw, Single-step optical lift-off process. IBM J. Res. Develop. 24(4), 452–460 (1980)CrossRef
139.
go back to reference J.M. Meckbach, M. Merker, S.J. Buehler, K. Ilin, B. Neumeier, U. Kienzle, E. Goldobin, R. Kleiner, D. Koelle, M. Siegel, Sub-\(\mu \mathrm {m}\) Josephson junctions for superconducting quantum devices. IEEE Trans. Appl. Supercond. 23(3), 1100504 (2013) J.M. Meckbach, M. Merker, S.J. Buehler, K. Ilin, B. Neumeier, U. Kienzle, E. Goldobin, R. Kleiner, D. Koelle, M. Siegel, Sub-\(\mu \mathrm {m}\) Josephson junctions for superconducting quantum devices. IEEE Trans. Appl. Supercond. 23(3), 1100504 (2013)
140.
go back to reference D. Berkoh, S. Kulkarni, Challenges in lift-off process using CAMP negative photoresist in III–V IC fabrication. IEEE Trans. Semicond. Manuf. 32(4), 513–517 (2019)CrossRef D. Berkoh, S. Kulkarni, Challenges in lift-off process using CAMP negative photoresist in III–V IC fabrication. IEEE Trans. Semicond. Manuf. 32(4), 513–517 (2019)CrossRef
141.
go back to reference T. May, M. Schubert, G. Wende, U. Hubner, L. Fritzsch, H.-G. Meyer, Cross-type submicron Josephson junctions using SNS technology for Josephson voltage standard applications. IEEE Trans. Appl. Supercond. 13(2), 142–145 (2003)CrossRef T. May, M. Schubert, G. Wende, U. Hubner, L. Fritzsch, H.-G. Meyer, Cross-type submicron Josephson junctions using SNS technology for Josephson voltage standard applications. IEEE Trans. Appl. Supercond. 13(2), 142–145 (2003)CrossRef
142.
go back to reference M. Bal, J. Long, R. Zhao, H. Wang, S. Park, C.R.H. McRae, T. Zhao, R.E. Lake, V. Monarkha, S. Simbierowicz, D. Frolov, R. Pilipenko, S. Zorzetti, A. Romanenko, C. Liu, R. McDermott, D.P. Pappas, Overlap junctions for superconducting quantum electronics and amplifiers. Appl. Phys. Lett. 118(11), 112601 (2021) M. Bal, J. Long, R. Zhao, H. Wang, S. Park, C.R.H. McRae, T. Zhao, R.E. Lake, V. Monarkha, S. Simbierowicz, D. Frolov, R. Pilipenko, S. Zorzetti, A. Romanenko, C. Liu, R. McDermott, D.P. Pappas, Overlap junctions for superconducting quantum electronics and amplifiers. Appl. Phys. Lett. 118(11), 112601 (2021)
143.
go back to reference W.L. McMillan, Tunneling model of the superconducting proximity effect. Phys. Rev. 175, 537–542 (1968)CrossRef W.L. McMillan, Tunneling model of the superconducting proximity effect. Phys. Rev. 175, 537–542 (1968)CrossRef
144.
go back to reference S.K. Tolpygo, D. Amparo, Electrical stress effect on Josephson tunneling through ultrathin AlOx barrier in Nb/Al/AlOx/Nb junctions. J. Appl. Phys. 104(6), 063904 (2008) S.K. Tolpygo, D. Amparo, Electrical stress effect on Josephson tunneling through ultrathin AlOx barrier in Nb/Al/AlOx/Nb junctions. J. Appl. Phys. 104(6), 063904 (2008)
145.
go back to reference H. Kumar, T. Jabbari, G. Krylov, K. Basu, E.G. Friedman, R. Karri, Toward increasing the difficulty of reverse engineering of RSFQ circuits. IEEE Trans. Appl. Supercond. 30(3), 1–13 (2020)CrossRef H. Kumar, T. Jabbari, G. Krylov, K. Basu, E.G. Friedman, R. Karri, Toward increasing the difficulty of reverse engineering of RSFQ circuits. IEEE Trans. Appl. Supercond. 30(3), 1–13 (2020)CrossRef
147.
go back to reference Y. Mustafa, T. Jabbari, S. Köse, Emerging attacks on logic locking in SFQ circuits and related countermeasures. IEEE Trans. Appl. Supercond. 32(3), 1–8 (2022)CrossRef Y. Mustafa, T. Jabbari, S. Köse, Emerging attacks on logic locking in SFQ circuits and related countermeasures. IEEE Trans. Appl. Supercond. 32(3), 1–8 (2022)CrossRef
148.
go back to reference T. Jabbari, H. Zandi, F. Foroughi, A. Bozbey, M. Fardmanesh, Investigation of readout cell configuration and parameters on functionality and stability of bi-directional RSFQ TFF. IEEE Trans. Appl. Supercond. 26(3), 1–5 (2016)CrossRef T. Jabbari, H. Zandi, F. Foroughi, A. Bozbey, M. Fardmanesh, Investigation of readout cell configuration and parameters on functionality and stability of bi-directional RSFQ TFF. IEEE Trans. Appl. Supercond. 26(3), 1–5 (2016)CrossRef
149.
go back to reference G. Krylov, E.G. Friedman, Bias distribution in ERSFQ VLSI circuits, in Proceedings of the IEEE International Symposium on Circuits and Systems (2020), pp. 1–5 G. Krylov, E.G. Friedman, Bias distribution in ERSFQ VLSI circuits, in Proceedings of the IEEE International Symposium on Circuits and Systems (2020), pp. 1–5
150.
go back to reference G. Krylov, E.G. Friedman, Bias networks for high complexity energy efficient single flux quantum circuits, in Proceedings of the Government Microcircuit Applications & Critical Technology Conference (2020) G. Krylov, E.G. Friedman, Bias networks for high complexity energy efficient single flux quantum circuits, in Proceedings of the Government Microcircuit Applications & Critical Technology Conference (2020)
151.
go back to reference T. Jabbari, H. Zandi, M. Fardmanesh, Frequency limitation due to switching transition of the bias current in bidirectional RSFQ logic. J. Supercond. Novel Magn. 30, 3619–3624 (2017)CrossRef T. Jabbari, H. Zandi, M. Fardmanesh, Frequency limitation due to switching transition of the bias current in bidirectional RSFQ logic. J. Supercond. Novel Magn. 30, 3619–3624 (2017)CrossRef
152.
go back to reference R.E. Miller, W.H. Mallison, A.W. Kleinsasser, K.A. Delin, E.M. Macedo, Niobium trilayer Josephson tunnel junctions with ultrahigh critical current densities. Appl. Phys. Lett. 63(10), 1423–1425 (1993)CrossRef R.E. Miller, W.H. Mallison, A.W. Kleinsasser, K.A. Delin, E.M. Macedo, Niobium trilayer Josephson tunnel junctions with ultrahigh critical current densities. Appl. Phys. Lett. 63(10), 1423–1425 (1993)CrossRef
153.
go back to reference S.K. Tolpygo, V. Bolkhovsky, D.E. Oates, R. Rastogi, S. Zarr, A.L. Day, T.J. Weir, A. Wynn, L.M. Johnson, Superconductor electronics fabrication process with MoNx kinetic inductors and self-shunted Josephson junctions. IEEE Trans. Appl. Supercond. 28(4), 1–12 (2018)CrossRef S.K. Tolpygo, V. Bolkhovsky, D.E. Oates, R. Rastogi, S. Zarr, A.L. Day, T.J. Weir, A. Wynn, L.M. Johnson, Superconductor electronics fabrication process with MoNx kinetic inductors and self-shunted Josephson junctions. IEEE Trans. Appl. Supercond. 28(4), 1–12 (2018)CrossRef
154.
go back to reference V.F. Pavlidis, I. Savidis, E.G. Friedman, Three-Dimensional Integrated Circuit Design, 2nd edn. (Morgan Kaufmann, Burlington, 2017) V.F. Pavlidis, I. Savidis, E.G. Friedman, Three-Dimensional Integrated Circuit Design, 2nd edn. (Morgan Kaufmann, Burlington, 2017)
155.
go back to reference H. Jun, J. Cho, K. Lee, H. Son, K. Kim, H. Jin, K. Kim, HBM (high bandwidth memory) DRAM technology and architecture, in Proceedings of the IEEE International Memory Workshop (2017) H. Jun, J. Cho, K. Lee, H. Son, K. Kim, H. Jin, K. Kim, HBM (high bandwidth memory) DRAM technology and architecture, in Proceedings of the IEEE International Memory Workshop (2017)
156.
go back to reference C. Monzio Compagnoni, A. Goda, A.S. Spinelli, P. Feeley, A.L. Lacaita, A. Visconti, Reviewing the evolution of the NAND flash technology. Proc. IEEE 105(9), 1609–1633 (2017)CrossRef C. Monzio Compagnoni, A. Goda, A.S. Spinelli, P. Feeley, A.L. Lacaita, A. Visconti, Reviewing the evolution of the NAND flash technology. Proc. IEEE 105(9), 1609–1633 (2017)CrossRef
157.
go back to reference B. Vaisband, 3-D ICs as a Platform for Heterogeneous Systems Integration, Ph.D. Dissertation, University of Rochester, Rochester, New York, 2017 B. Vaisband, 3-D ICs as a Platform for Heterogeneous Systems Integration, Ph.D. Dissertation, University of Rochester, Rochester, New York, 2017
158.
go back to reference S.K. Tolpygo, V. Bolkhovsky, R. Rastogi, S. Zarr, A.L. Day, E. Golden, T.J. Weir, A. Wynn, L.M. Johnson, Planarized fabrication process with two layers of SIS Josephson junctions and integration of SIS and SFS \(\pi \)-junctions. IEEE Trans. Appl. Supercond. 29(5), 1–8 (2019) S.K. Tolpygo, V. Bolkhovsky, R. Rastogi, S. Zarr, A.L. Day, E. Golden, T.J. Weir, A. Wynn, L.M. Johnson, Planarized fabrication process with two layers of SIS Josephson junctions and integration of SIS and SFS \(\pi \)-junctions. IEEE Trans. Appl. Supercond. 29(5), 1–8 (2019)
159.
go back to reference G. Krylov, E.G. Friedman, Design for testability of SFQ circuits. IEEE Trans. Appl. Supercond. 27(8), 1–7 (2017)CrossRef G. Krylov, E.G. Friedman, Design for testability of SFQ circuits. IEEE Trans. Appl. Supercond. 27(8), 1–7 (2017)CrossRef
Metadata
Title
Superconductive IC Manufacturing
Authors
Gleb Krylov
Tahereh Jabbari
Eby G. Friedman
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-47475-0_3