Skip to main content

2024 | OriginalPaper | Buchkapitel

3. Superconductive IC Manufacturing

verfasst von : Gleb Krylov, Tahereh Jabbari, Eby G. Friedman

Erschienen in: Single Flux Quantum Integrated Circuit Design

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Manufacturing integrated circuits is a complex and intricate process, both for semiconductor and superconductive electronics. Despite the minimum feature size and number of layers in modern SCE technology being less deeply scaled as compared to semiconductor technologies, numerous challenges exist in manufacturing superconductive electronics. The materials used during the different fabrication steps interact in complex mechanical, chemical, and electrical ways, requiring adjustments to the manufacturing process. These issues are exacerbated by the high sensitivity of superconductive circuits to process variations. In this chapter, the different steps and materials used in the manufacturing process of superconductive circuits are described. Challenges unique to superconductive electronics are highlighted. Important features of modern superconductive fabrication technologies are discussed and compared to the fabrication of semiconductor-based integrated circuits.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
22.
Zurück zum Zitat T. Jabbari, F. Shanehsazzadeh, H. Zandi, M. Banzet, J. Schubert, M. Fardmanesh, Effects of the design parameters on characteristics of the inductances and JJs in HTS RSFQ circuits. IEEE Trans. Appl. Supercond. 28(7), 1–4 (2018)CrossRef T. Jabbari, F. Shanehsazzadeh, H. Zandi, M. Banzet, J. Schubert, M. Fardmanesh, Effects of the design parameters on characteristics of the inductances and JJs in HTS RSFQ circuits. IEEE Trans. Appl. Supercond. 28(7), 1–4 (2018)CrossRef
25.
Zurück zum Zitat K.K. Likharev, V.K. Semenov, RSFQ logic/memory family: a new Josephson-junction technology for sub-terahertz-clock-frequency digital systems. IEEE Trans. Appl. Supercond. 1(1), 3–28 (1991)CrossRef K.K. Likharev, V.K. Semenov, RSFQ logic/memory family: a new Josephson-junction technology for sub-terahertz-clock-frequency digital systems. IEEE Trans. Appl. Supercond. 1(1), 3–28 (1991)CrossRef
38.
Zurück zum Zitat S. Whiteley, E. Mlinar, G. Krylov, T. Jabbari, E.G. Friedman, J. Kawa, An SFQ digital circuit technology with fully-passive transmission line interconnect, in Proceedings of the Applied Superconductivity Conference (2020) S. Whiteley, E. Mlinar, G. Krylov, T. Jabbari, E.G. Friedman, J. Kawa, An SFQ digital circuit technology with fully-passive transmission line interconnect, in Proceedings of the Applied Superconductivity Conference (2020)
41.
Zurück zum Zitat T. Jabbari, E.G. Friedman, Global interconnects in VLSI complexity single flux quantum systems, in Proceedings of the Workshop on System-Level Interconnect: Problems and Pathfinding Workshop (2020), pp. 1–7 T. Jabbari, E.G. Friedman, Global interconnects in VLSI complexity single flux quantum systems, in Proceedings of the Workshop on System-Level Interconnect: Problems and Pathfinding Workshop (2020), pp. 1–7
42.
Zurück zum Zitat T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Repeater insertion in SFQ interconnect. IEEE Trans. Appl. Supercond. 30(8), 5400508 (2020) T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Repeater insertion in SFQ interconnect. IEEE Trans. Appl. Supercond. 30(8), 5400508 (2020)
56.
Zurück zum Zitat T. Jabbari, M. Bocko, E.G. Friedman, All-JJ logic based on bistable JJs. IEEE Trans. Appl. Supercond. 33(5), 1–7 (2023) T. Jabbari, M. Bocko, E.G. Friedman, All-JJ logic based on bistable JJs. IEEE Trans. Appl. Supercond. 33(5), 1–7 (2023)
57.
Zurück zum Zitat T. Jabbari, E.G. Friedman, Transmission lines in VLSI complexity single flux quantum systems, in Proceedings of the PhotonIcs and Electromagnetics Research Symposium (2023), pp. 1749–1759 T. Jabbari, E.G. Friedman, Transmission lines in VLSI complexity single flux quantum systems, in Proceedings of the PhotonIcs and Electromagnetics Research Symposium (2023), pp. 1749–1759
59.
Zurück zum Zitat T. Jabbari, J. Kawa, E.G. Friedman, H-tree clock synthesis in RSFQ circuits, in Proceedings of the IEEE Baltic Electronics Conference (2020), pp. 1–5 T. Jabbari, J. Kawa, E.G. Friedman, H-tree clock synthesis in RSFQ circuits, in Proceedings of the IEEE Baltic Electronics Conference (2020), pp. 1–5
60.
Zurück zum Zitat T. Jabbari, G. Krylov, J Kawa, E.G. Friedman, Splitter trees in single flux quantum circuits. IEEE Trans. Appl. Supercond. 31(5), 1302606 (2021) T. Jabbari, G. Krylov, J Kawa, E.G. Friedman, Splitter trees in single flux quantum circuits. IEEE Trans. Appl. Supercond. 31(5), 1302606 (2021)
61.
Zurück zum Zitat T. Jabbari, E.G. Friedman, Flux mitigation in wide superconductive striplines. IEEE Trans. Appl. Supercond. 32(3), 1–6 (2022)CrossRef T. Jabbari, E.G. Friedman, Flux mitigation in wide superconductive striplines. IEEE Trans. Appl. Supercond. 32(3), 1–6 (2022)CrossRef
63.
Zurück zum Zitat T. Jabbari, E.G. Friedman, Stripline topology for flux mitigation. IEEE Trans. Appl. Supercond. 335, 1–4 (2023) T. Jabbari, E.G. Friedman, Stripline topology for flux mitigation. IEEE Trans. Appl. Supercond. 335, 1–4 (2023)
65.
Zurück zum Zitat T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Resonance effects in single flux quantum interconnect, in Proceedings of the Government Microcircuit Applications and Critical Technology Conference (2020), pp. 1–5 T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Resonance effects in single flux quantum interconnect, in Proceedings of the Government Microcircuit Applications and Critical Technology Conference (2020), pp. 1–5
87.
Zurück zum Zitat T. Jabbari, E.G. Friedman, Surface inductance of superconductive striplines. IEEE Trans. Circuits Syst. II Express Briefs 69(6), 2952–2956 (2022) T. Jabbari, E.G. Friedman, Surface inductance of superconductive striplines. IEEE Trans. Circuits Syst. II Express Briefs 69(6), 2952–2956 (2022)
91.
Zurück zum Zitat S.K. Tolpygo, Superconductor digital electronics: scalability and energy efficiency issues. Low Temp. Phys. 42(5), 361–379 (2016)CrossRef S.K. Tolpygo, Superconductor digital electronics: scalability and energy efficiency issues. Low Temp. Phys. 42(5), 361–379 (2016)CrossRef
95.
Zurück zum Zitat C.M. Natarajan, M.G. Tanner, R.H. Hadfield, Superconducting nanowire single-photon detectors: physics and applications. Supercond. Sci. Technol. 25(6), 063001 (2012) C.M. Natarajan, M.G. Tanner, R.H. Hadfield, Superconducting nanowire single-photon detectors: physics and applications. Supercond. Sci. Technol. 25(6), 063001 (2012)
98.
Zurück zum Zitat G. Krylov, E.G. Friedman, Sense amplifier for spin-based cryogenic memory cells. IEEE Trans. Appl. Supercond. 29(5), 1–4 (2019). Art no. 1501804 G. Krylov, E.G. Friedman, Sense amplifier for spin-based cryogenic memory cells. IEEE Trans. Appl. Supercond. 29(5), 1–4 (2019). Art no. 1501804
104.
Zurück zum Zitat G. Krylov, E.G. Friedman, Behavioral verilog-A model of superconductor-ferromagnetic transistor, in Proceedings of the IEEE International Symposium on Circuits and Systems (2018) G. Krylov, E.G. Friedman, Behavioral verilog-A model of superconductor-ferromagnetic transistor, in Proceedings of the IEEE International Symposium on Circuits and Systems (2018)
106.
Zurück zum Zitat S.K Tolpygo, V. Bolkhovsky, R. Rastogi, S. Zarr, A.L. Day, E. Golden, T.J. Weir, A. Wynn, L.M. Johnson, Advanced fabrication processes for superconductor electronics: current status and new developments. IEEE Trans. Appl. Supercond. 29(5), 1–13 (2019) S.K Tolpygo, V. Bolkhovsky, R. Rastogi, S. Zarr, A.L. Day, E. Golden, T.J. Weir, A. Wynn, L.M. Johnson, Advanced fabrication processes for superconductor electronics: current status and new developments. IEEE Trans. Appl. Supercond. 29(5), 1–13 (2019)
107.
Zurück zum Zitat T. Ando, S. Nagasawa, N. Takeuchi, N. Tsuji, F. China, M. Hidaka, Y. Yamanashi, N. Yoshikawa, Three-dimensional adiabatic quantum-flux-parametron fabricated using a double-active-layered niobium process. Supercond. Sci. Technol. 30(7), 075003 (2017) T. Ando, S. Nagasawa, N. Takeuchi, N. Tsuji, F. China, M. Hidaka, Y. Yamanashi, N. Yoshikawa, Three-dimensional adiabatic quantum-flux-parametron fabricated using a double-active-layered niobium process. Supercond. Sci. Technol. 30(7), 075003 (2017)
108.
Zurück zum Zitat D.T. Yohannes, R.T. Hunt, J.A. Vivalda, D. Amparo, A. Cohen, I.V. Vernik, A.F. Kirichenko, Planarized, extendible, multilayer fabrication process for superconducting electronics. IEEE Trans. Appl. Supercond. 25(3), 1–5 (2015)CrossRef D.T. Yohannes, R.T. Hunt, J.A. Vivalda, D. Amparo, A. Cohen, I.V. Vernik, A.F. Kirichenko, Planarized, extendible, multilayer fabrication process for superconducting electronics. IEEE Trans. Appl. Supercond. 25(3), 1–5 (2015)CrossRef
109.
Zurück zum Zitat D. Yohannes, S. Sarwana, S.K. Tolpygo, A. Sahu, Y.A. Polyakov, V.K. Semenov, Characterization of HYPRES’ 4.5 \(kA/cm^2\) & 8 \(kA/cm^2\)\(Nb/AlO_x/Nb\) fabrication processes. IEEE Trans. Appl. Supercond. 15(2), 90–93 (2005) D. Yohannes, S. Sarwana, S.K. Tolpygo, A. Sahu, Y.A. Polyakov, V.K. Semenov, Characterization of HYPRES’ 4.5 \(kA/cm^2\) & 8 \(kA/cm^2\)\(Nb/AlO_x/Nb\) fabrication processes. IEEE Trans. Appl. Supercond. 15(2), 90–93 (2005)
110.
Zurück zum Zitat G. Krylov, E.G. Friedman, Partitioning RSFQ circuits for current recycling. IEEE Trans. Appl. Supercond. 31(5), 1–6 (2021)CrossRef G. Krylov, E.G. Friedman, Partitioning RSFQ circuits for current recycling. IEEE Trans. Appl. Supercond. 31(5), 1–6 (2021)CrossRef
111.
Zurück zum Zitat S.K. Tolpygo, V. Bolkhovsky, T.J. Weir, A. Wynn, D.E. Oates, L.M. Johnson, M.A. Gouker, Advanced fabrication processes for superconducting very large-scale integrated circuits. IEEE Trans. Appl. Supercond. 26(3), 1–10 (2016)CrossRef S.K. Tolpygo, V. Bolkhovsky, T.J. Weir, A. Wynn, D.E. Oates, L.M. Johnson, M.A. Gouker, Advanced fabrication processes for superconducting very large-scale integrated circuits. IEEE Trans. Appl. Supercond. 26(3), 1–10 (2016)CrossRef
112.
Zurück zum Zitat F. Bedard, N. Welker, G.R. Gotter, M.A. Escavage, J.T. Pinkston, Superconducting Technology Assessment (National Security Agency, Office of Corporate Assessments, Fort Meade, Maryland, 2005) F. Bedard, N. Welker, G.R. Gotter, M.A. Escavage, J.T. Pinkston, Superconducting Technology Assessment (National Security Agency, Office of Corporate Assessments, Fort Meade, Maryland, 2005)
113.
Zurück zum Zitat J.M. Murduck, Fabrication of Superconducting Devices and Circuits. Frontiers of Thin Film Technology (Elsevier, Amsterdam, 2001)CrossRef J.M. Murduck, Fabrication of Superconducting Devices and Circuits. Frontiers of Thin Film Technology (Elsevier, Amsterdam, 2001)CrossRef
114.
Zurück zum Zitat Y. Tarutani, M. Hirano, U. Kawabe, Niobium-based integrated circuit technologies. Proc. IEEE 77(8), 1164–1176 (1989)CrossRef Y. Tarutani, M. Hirano, U. Kawabe, Niobium-based integrated circuit technologies. Proc. IEEE 77(8), 1164–1176 (1989)CrossRef
115.
Zurück zum Zitat E.L. Wolf, Introduction to refractory Josephson junctions, in Josephson Junctions: History, Devices, and Applications, ed. by E.L. Wolf, G.B. Arnold, M.A. Gurvitch, J.F. Zasadzinski, Chapter 2 (Pan Stanford Publishing Pte. Ltd., Singapore, 2017), pp. 17–46 E.L. Wolf, Introduction to refractory Josephson junctions, in Josephson Junctions: History, Devices, and Applications, ed. by E.L. Wolf, G.B. Arnold, M.A. Gurvitch, J.F. Zasadzinski, Chapter 2 (Pan Stanford Publishing Pte. Ltd., Singapore, 2017), pp. 17–46
116.
Zurück zum Zitat M.A. Gurvitch, The trace that launched a thousand chips: development of Nb/Al–Oxide–Nb technology, in Josephson Junctions: History, Devices, and Applications, ed. by E.L. Wolf, G.B. Arnold, M.A. Gurvitch, J. F. Zasadzinski, Chapter 5 (Pan Stanford Publishing Pte. Ltd., Singapore, 2017), pp. 83–146 M.A. Gurvitch, The trace that launched a thousand chips: development of Nb/Al–Oxide–Nb technology, in Josephson Junctions: History, Devices, and Applications, ed. by E.L. Wolf, G.B. Arnold, M.A. Gurvitch, J. F. Zasadzinski, Chapter 5 (Pan Stanford Publishing Pte. Ltd., Singapore, 2017), pp. 83–146
117.
Zurück zum Zitat A.L. Robinson, New superconductors for a supercomputer. Science 215(4528), 40–43 (1982)CrossRef A.L. Robinson, New superconductors for a supercomputer. Science 215(4528), 40–43 (1982)CrossRef
118.
Zurück zum Zitat I. Ames, An overview of materials and process aspects of Josephson integrated circuit fabrication. IBM J. Res. Develop. 24(2), 188–194 (1980)CrossRef I. Ames, An overview of materials and process aspects of Josephson integrated circuit fabrication. IBM J. Res. Develop. 24(2), 188–194 (1980)CrossRef
119.
Zurück zum Zitat I. Giaever, Energy gap in superconductors measured by electron tunneling. Phys. Rev. Lett. 5, 147–148 (1960)CrossRef I. Giaever, Energy gap in superconductors measured by electron tunneling. Phys. Rev. Lett. 5, 147–148 (1960)CrossRef
120.
Zurück zum Zitat I.P. Litikov, O.A. Mukhanov, Loop self-testing of Josephson junction digital structures, in Avtomatika i Vychislitelnaya Tekhnika [Soviet Automatics and Computers], No. 1 (1988), pp. 70–78 I.P. Litikov, O.A. Mukhanov, Loop self-testing of Josephson junction digital structures, in Avtomatika i Vychislitelnaya Tekhnika [Soviet Automatics and Computers], No. 1 (1988), pp. 70–78
121.
Zurück zum Zitat D. Shen, R. Zhu, W. Xu, J. Chang, Z. Ji, G. Sun, C. Cao, J. Chen, Character and fabrication of Al/\(Al_2 O_3\)/Al tunnel junctions for qubit application. Chin. Sci. Bull. 57(4), 409–412 (2012) D. Shen, R. Zhu, W. Xu, J. Chang, Z. Ji, G. Sun, C. Cao, J. Chen, Character and fabrication of Al/\(Al_2 O_3\)/Al tunnel junctions for qubit application. Chin. Sci. Bull. 57(4), 409–412 (2012)
122.
Zurück zum Zitat D.R.W. Yost, M.E. Schwartz, J. Mallek, D. Rosenberg, C. Stull, J.L. Yoder, G. Calusine, M. Cook, R. Das, A.L. Day, E.B. Golden, D.K. Kim, A. Melville, B.M. Niedzielski, W. Woods, A.J. Kerman, W.D. Oliver, Solid-state qubits integrated with superconducting through-silicon vias. NPJ Quant. Inf. 6(1), 1–7 (2020) D.R.W. Yost, M.E. Schwartz, J. Mallek, D. Rosenberg, C. Stull, J.L. Yoder, G. Calusine, M. Cook, R. Das, A.L. Day, E.B. Golden, D.K. Kim, A. Melville, B.M. Niedzielski, W. Woods, A.J. Kerman, W.D. Oliver, Solid-state qubits integrated with superconducting through-silicon vias. NPJ Quant. Inf. 6(1), 1–7 (2020)
123.
Zurück zum Zitat M. Gurvitch, M.A. Washington, H.A. Huggins, High quality refractory Josephson tunnel junctions utilizing thin aluminum layers. Appl. Phys. Lett. 42(5), 472–474 (1983)CrossRef M. Gurvitch, M.A. Washington, H.A. Huggins, High quality refractory Josephson tunnel junctions utilizing thin aluminum layers. Appl. Phys. Lett. 42(5), 472–474 (1983)CrossRef
124.
Zurück zum Zitat Y. Uzawa, S. Saito, W. Qiu, K. Makise, T. Kojima, Z. Wang, Optical and tunneling studies of energy gap in superconducting niobium nitride films. J. Low Temp. Phys. 199, 143–148 (2020)CrossRef Y. Uzawa, S. Saito, W. Qiu, K. Makise, T. Kojima, Z. Wang, Optical and tunneling studies of energy gap in superconducting niobium nitride films. J. Low Temp. Phys. 199, 143–148 (2020)CrossRef
125.
Zurück zum Zitat M.M.T.M. Dierichs, B.J. Feenstra, A. Skalare, C.E. Honingh, J. Mees, H.v.d. Stadt, Th. de Graauw, Evaluation of niobium transmission lines up to the superconducting gap frequency. Appl. Phys. Lett. 63(2), 249–251 (1993) M.M.T.M. Dierichs, B.J. Feenstra, A. Skalare, C.E. Honingh, J. Mees, H.v.d. Stadt, Th. de Graauw, Evaluation of niobium transmission lines up to the superconducting gap frequency. Appl. Phys. Lett. 63(2), 249–251 (1993)
126.
Zurück zum Zitat K. Steinberg, M. Scheffler, M. Dressel, Quasiparticle response of superconducting aluminum to electromagnetic radiation. Phys. Rev. B 77, 214517 (2008)CrossRef K. Steinberg, M. Scheffler, M. Dressel, Quasiparticle response of superconducting aluminum to electromagnetic radiation. Phys. Rev. B 77, 214517 (2008)CrossRef
127.
Zurück zum Zitat J.C. Villegier, Refractory niobium nitride NbN Josephson junctions and applications, in Josephson Junctions: History, Devices, and Applications, Chapter 6, ed. by E.L. Wolf, G.B. Arnold, M.A. Gurvitch, J.F. Zasadzinski (Pan Stanford Publishing Pte. Ltd., Singapore, 2017), pp. 147–183 J.C. Villegier, Refractory niobium nitride NbN Josephson junctions and applications, in Josephson Junctions: History, Devices, and Applications, Chapter 6, ed. by E.L. Wolf, G.B. Arnold, M.A. Gurvitch, J.F. Zasadzinski (Pan Stanford Publishing Pte. Ltd., Singapore, 2017), pp. 147–183
128.
Zurück zum Zitat M. Radparvar, Superconducting niobium and niobium nitride processes for medium-scale integration applications. Cryogenics 35, 535–540 (1995)CrossRef M. Radparvar, Superconducting niobium and niobium nitride processes for medium-scale integration applications. Cryogenics 35, 535–540 (1995)CrossRef
129.
Zurück zum Zitat S.K. Tolpygo, Scalability of superconductor electronics: limitations imposed by AC clock and flux bias transformers. IEEE Trans. Appl. Supercond. 33(2), 1–19 (2023)CrossRef S.K. Tolpygo, Scalability of superconductor electronics: limitations imposed by AC clock and flux bias transformers. IEEE Trans. Appl. Supercond. 33(2), 1–19 (2023)CrossRef
130.
Zurück zum Zitat L.A. Abelson, G.L. Kerber, Superconductor integrated circuit fabrication technology. Proc. IEEE 92(10), 1517–1533 (2004)CrossRef L.A. Abelson, G.L. Kerber, Superconductor integrated circuit fabrication technology. Proc. IEEE 92(10), 1517–1533 (2004)CrossRef
131.
Zurück zum Zitat G. Krylov, E.G. Friedman, Design methodology for distributed large-scale ERSFQ bias networks. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 28(11), 2438–2447 (2020) G. Krylov, E.G. Friedman, Design methodology for distributed large-scale ERSFQ bias networks. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 28(11), 2438–2447 (2020)
132.
Zurück zum Zitat G. Krylov, E.G. Friedman, Asynchronous dynamic single flux quantum majority gates. IEEE Trans. Appl. Supercond. 30(5), 1–7 (2020). Art no. 1300907 G. Krylov, E.G. Friedman, Asynchronous dynamic single flux quantum majority gates. IEEE Trans. Appl. Supercond. 30(5), 1–7 (2020). Art no. 1300907
133.
Zurück zum Zitat D.C. Rorer, D.G. Onn, H. Meyer, Thermodynamic properties of molybdenum in its superconducting and normal state. Phys. Rev. 138, A1661–A1668 (1965)CrossRef D.C. Rorer, D.G. Onn, H. Meyer, Thermodynamic properties of molybdenum in its superconducting and normal state. Phys. Rev. 138, A1661–A1668 (1965)CrossRef
134.
Zurück zum Zitat T.H. Geballe, B.T. Matthias, E. Corenzwit, G.W. Hull, Superconductivity in molybdenum. Phys. Rev. Lett. 8, 313–313 (1962)CrossRef T.H. Geballe, B.T. Matthias, E. Corenzwit, G.W. Hull, Superconductivity in molybdenum. Phys. Rev. Lett. 8, 313–313 (1962)CrossRef
135.
Zurück zum Zitat D. Yohannes, A. Kirichenko, S. Sarwana, S.K. Tolpygo, Parametric testing of HYPRES superconducting integrated circuit fabrication processes. IEEE Trans. Appl. Supercond. 17(2), 181–186 (2007)CrossRef D. Yohannes, A. Kirichenko, S. Sarwana, S.K. Tolpygo, Parametric testing of HYPRES superconducting integrated circuit fabrication processes. IEEE Trans. Appl. Supercond. 17(2), 181–186 (2007)CrossRef
136.
Zurück zum Zitat S.K. Tolpygo, V. Bolkhovsky, T.J. Weir, L.M. Johnson, M.A. Gouker, W.D. Oliver, Fabrication process and properties of fully-planarized deep-submicron Nb/Al–\(\mathrm {AlO}_{\mathrm {x}}/\mathrm {Nb}\) Josephson junctions for VLSI circuits. IEEE Trans. Appl. Supercond. 25(3), 1–12 (2015) S.K. Tolpygo, V. Bolkhovsky, T.J. Weir, L.M. Johnson, M.A. Gouker, W.D. Oliver, Fabrication process and properties of fully-planarized deep-submicron Nb/Al–\(\mathrm {AlO}_{\mathrm {x}}/\mathrm {Nb}\) Josephson junctions for VLSI circuits. IEEE Trans. Appl. Supercond. 25(3), 1–12 (2015)
137.
Zurück zum Zitat T. Jabbari, E.G. Friedman, Inductive and capacitive coupling noise in superconductive VLSI circuits. IEEE Trans. Appl. Supercond. 33(9), 3800707 (2023) T. Jabbari, E.G. Friedman, Inductive and capacitive coupling noise in superconductive VLSI circuits. IEEE Trans. Appl. Supercond. 33(9), 3800707 (2023)
138.
Zurück zum Zitat M. Hatzakis, B.J. Canavello, J.M. Shaw, Single-step optical lift-off process. IBM J. Res. Develop. 24(4), 452–460 (1980)CrossRef M. Hatzakis, B.J. Canavello, J.M. Shaw, Single-step optical lift-off process. IBM J. Res. Develop. 24(4), 452–460 (1980)CrossRef
139.
Zurück zum Zitat J.M. Meckbach, M. Merker, S.J. Buehler, K. Ilin, B. Neumeier, U. Kienzle, E. Goldobin, R. Kleiner, D. Koelle, M. Siegel, Sub-\(\mu \mathrm {m}\) Josephson junctions for superconducting quantum devices. IEEE Trans. Appl. Supercond. 23(3), 1100504 (2013) J.M. Meckbach, M. Merker, S.J. Buehler, K. Ilin, B. Neumeier, U. Kienzle, E. Goldobin, R. Kleiner, D. Koelle, M. Siegel, Sub-\(\mu \mathrm {m}\) Josephson junctions for superconducting quantum devices. IEEE Trans. Appl. Supercond. 23(3), 1100504 (2013)
140.
Zurück zum Zitat D. Berkoh, S. Kulkarni, Challenges in lift-off process using CAMP negative photoresist in III–V IC fabrication. IEEE Trans. Semicond. Manuf. 32(4), 513–517 (2019)CrossRef D. Berkoh, S. Kulkarni, Challenges in lift-off process using CAMP negative photoresist in III–V IC fabrication. IEEE Trans. Semicond. Manuf. 32(4), 513–517 (2019)CrossRef
141.
Zurück zum Zitat T. May, M. Schubert, G. Wende, U. Hubner, L. Fritzsch, H.-G. Meyer, Cross-type submicron Josephson junctions using SNS technology for Josephson voltage standard applications. IEEE Trans. Appl. Supercond. 13(2), 142–145 (2003)CrossRef T. May, M. Schubert, G. Wende, U. Hubner, L. Fritzsch, H.-G. Meyer, Cross-type submicron Josephson junctions using SNS technology for Josephson voltage standard applications. IEEE Trans. Appl. Supercond. 13(2), 142–145 (2003)CrossRef
142.
Zurück zum Zitat M. Bal, J. Long, R. Zhao, H. Wang, S. Park, C.R.H. McRae, T. Zhao, R.E. Lake, V. Monarkha, S. Simbierowicz, D. Frolov, R. Pilipenko, S. Zorzetti, A. Romanenko, C. Liu, R. McDermott, D.P. Pappas, Overlap junctions for superconducting quantum electronics and amplifiers. Appl. Phys. Lett. 118(11), 112601 (2021) M. Bal, J. Long, R. Zhao, H. Wang, S. Park, C.R.H. McRae, T. Zhao, R.E. Lake, V. Monarkha, S. Simbierowicz, D. Frolov, R. Pilipenko, S. Zorzetti, A. Romanenko, C. Liu, R. McDermott, D.P. Pappas, Overlap junctions for superconducting quantum electronics and amplifiers. Appl. Phys. Lett. 118(11), 112601 (2021)
143.
Zurück zum Zitat W.L. McMillan, Tunneling model of the superconducting proximity effect. Phys. Rev. 175, 537–542 (1968)CrossRef W.L. McMillan, Tunneling model of the superconducting proximity effect. Phys. Rev. 175, 537–542 (1968)CrossRef
144.
Zurück zum Zitat S.K. Tolpygo, D. Amparo, Electrical stress effect on Josephson tunneling through ultrathin AlOx barrier in Nb/Al/AlOx/Nb junctions. J. Appl. Phys. 104(6), 063904 (2008) S.K. Tolpygo, D. Amparo, Electrical stress effect on Josephson tunneling through ultrathin AlOx barrier in Nb/Al/AlOx/Nb junctions. J. Appl. Phys. 104(6), 063904 (2008)
145.
Zurück zum Zitat H. Kumar, T. Jabbari, G. Krylov, K. Basu, E.G. Friedman, R. Karri, Toward increasing the difficulty of reverse engineering of RSFQ circuits. IEEE Trans. Appl. Supercond. 30(3), 1–13 (2020)CrossRef H. Kumar, T. Jabbari, G. Krylov, K. Basu, E.G. Friedman, R. Karri, Toward increasing the difficulty of reverse engineering of RSFQ circuits. IEEE Trans. Appl. Supercond. 30(3), 1–13 (2020)CrossRef
147.
Zurück zum Zitat Y. Mustafa, T. Jabbari, S. Köse, Emerging attacks on logic locking in SFQ circuits and related countermeasures. IEEE Trans. Appl. Supercond. 32(3), 1–8 (2022)CrossRef Y. Mustafa, T. Jabbari, S. Köse, Emerging attacks on logic locking in SFQ circuits and related countermeasures. IEEE Trans. Appl. Supercond. 32(3), 1–8 (2022)CrossRef
148.
Zurück zum Zitat T. Jabbari, H. Zandi, F. Foroughi, A. Bozbey, M. Fardmanesh, Investigation of readout cell configuration and parameters on functionality and stability of bi-directional RSFQ TFF. IEEE Trans. Appl. Supercond. 26(3), 1–5 (2016)CrossRef T. Jabbari, H. Zandi, F. Foroughi, A. Bozbey, M. Fardmanesh, Investigation of readout cell configuration and parameters on functionality and stability of bi-directional RSFQ TFF. IEEE Trans. Appl. Supercond. 26(3), 1–5 (2016)CrossRef
149.
Zurück zum Zitat G. Krylov, E.G. Friedman, Bias distribution in ERSFQ VLSI circuits, in Proceedings of the IEEE International Symposium on Circuits and Systems (2020), pp. 1–5 G. Krylov, E.G. Friedman, Bias distribution in ERSFQ VLSI circuits, in Proceedings of the IEEE International Symposium on Circuits and Systems (2020), pp. 1–5
150.
Zurück zum Zitat G. Krylov, E.G. Friedman, Bias networks for high complexity energy efficient single flux quantum circuits, in Proceedings of the Government Microcircuit Applications & Critical Technology Conference (2020) G. Krylov, E.G. Friedman, Bias networks for high complexity energy efficient single flux quantum circuits, in Proceedings of the Government Microcircuit Applications & Critical Technology Conference (2020)
151.
Zurück zum Zitat T. Jabbari, H. Zandi, M. Fardmanesh, Frequency limitation due to switching transition of the bias current in bidirectional RSFQ logic. J. Supercond. Novel Magn. 30, 3619–3624 (2017)CrossRef T. Jabbari, H. Zandi, M. Fardmanesh, Frequency limitation due to switching transition of the bias current in bidirectional RSFQ logic. J. Supercond. Novel Magn. 30, 3619–3624 (2017)CrossRef
152.
Zurück zum Zitat R.E. Miller, W.H. Mallison, A.W. Kleinsasser, K.A. Delin, E.M. Macedo, Niobium trilayer Josephson tunnel junctions with ultrahigh critical current densities. Appl. Phys. Lett. 63(10), 1423–1425 (1993)CrossRef R.E. Miller, W.H. Mallison, A.W. Kleinsasser, K.A. Delin, E.M. Macedo, Niobium trilayer Josephson tunnel junctions with ultrahigh critical current densities. Appl. Phys. Lett. 63(10), 1423–1425 (1993)CrossRef
153.
Zurück zum Zitat S.K. Tolpygo, V. Bolkhovsky, D.E. Oates, R. Rastogi, S. Zarr, A.L. Day, T.J. Weir, A. Wynn, L.M. Johnson, Superconductor electronics fabrication process with MoNx kinetic inductors and self-shunted Josephson junctions. IEEE Trans. Appl. Supercond. 28(4), 1–12 (2018)CrossRef S.K. Tolpygo, V. Bolkhovsky, D.E. Oates, R. Rastogi, S. Zarr, A.L. Day, T.J. Weir, A. Wynn, L.M. Johnson, Superconductor electronics fabrication process with MoNx kinetic inductors and self-shunted Josephson junctions. IEEE Trans. Appl. Supercond. 28(4), 1–12 (2018)CrossRef
154.
Zurück zum Zitat V.F. Pavlidis, I. Savidis, E.G. Friedman, Three-Dimensional Integrated Circuit Design, 2nd edn. (Morgan Kaufmann, Burlington, 2017) V.F. Pavlidis, I. Savidis, E.G. Friedman, Three-Dimensional Integrated Circuit Design, 2nd edn. (Morgan Kaufmann, Burlington, 2017)
155.
Zurück zum Zitat H. Jun, J. Cho, K. Lee, H. Son, K. Kim, H. Jin, K. Kim, HBM (high bandwidth memory) DRAM technology and architecture, in Proceedings of the IEEE International Memory Workshop (2017) H. Jun, J. Cho, K. Lee, H. Son, K. Kim, H. Jin, K. Kim, HBM (high bandwidth memory) DRAM technology and architecture, in Proceedings of the IEEE International Memory Workshop (2017)
156.
Zurück zum Zitat C. Monzio Compagnoni, A. Goda, A.S. Spinelli, P. Feeley, A.L. Lacaita, A. Visconti, Reviewing the evolution of the NAND flash technology. Proc. IEEE 105(9), 1609–1633 (2017)CrossRef C. Monzio Compagnoni, A. Goda, A.S. Spinelli, P. Feeley, A.L. Lacaita, A. Visconti, Reviewing the evolution of the NAND flash technology. Proc. IEEE 105(9), 1609–1633 (2017)CrossRef
157.
Zurück zum Zitat B. Vaisband, 3-D ICs as a Platform for Heterogeneous Systems Integration, Ph.D. Dissertation, University of Rochester, Rochester, New York, 2017 B. Vaisband, 3-D ICs as a Platform for Heterogeneous Systems Integration, Ph.D. Dissertation, University of Rochester, Rochester, New York, 2017
158.
Zurück zum Zitat S.K. Tolpygo, V. Bolkhovsky, R. Rastogi, S. Zarr, A.L. Day, E. Golden, T.J. Weir, A. Wynn, L.M. Johnson, Planarized fabrication process with two layers of SIS Josephson junctions and integration of SIS and SFS \(\pi \)-junctions. IEEE Trans. Appl. Supercond. 29(5), 1–8 (2019) S.K. Tolpygo, V. Bolkhovsky, R. Rastogi, S. Zarr, A.L. Day, E. Golden, T.J. Weir, A. Wynn, L.M. Johnson, Planarized fabrication process with two layers of SIS Josephson junctions and integration of SIS and SFS \(\pi \)-junctions. IEEE Trans. Appl. Supercond. 29(5), 1–8 (2019)
159.
Zurück zum Zitat G. Krylov, E.G. Friedman, Design for testability of SFQ circuits. IEEE Trans. Appl. Supercond. 27(8), 1–7 (2017)CrossRef G. Krylov, E.G. Friedman, Design for testability of SFQ circuits. IEEE Trans. Appl. Supercond. 27(8), 1–7 (2017)CrossRef
Metadaten
Titel
Superconductive IC Manufacturing
verfasst von
Gleb Krylov
Tahereh Jabbari
Eby G. Friedman
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-47475-0_3

Neuer Inhalt