Skip to main content

2024 | OriginalPaper | Buchkapitel

Environmental Impact and Economic Benefits of Biopolymers in the Textile Industry

verfasst von : Heena Gupta

Erschienen in: Biopolymers in the Textile Industry

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The excessive utilization of petroleum-based synthetic and non-biodegradable resources for a variety of applications in textile industry has caused severe environmental destruction. The need for sustainable materials has stimulated scientists to explore alternative materials. For instance, biopolymers have gained attention owing to their ecological and biodegradable nature. Over the past decades, textile industry has been using synthetic- and plastic-based materials owing to their attractive properties such as low cost, easily availability, and versatility. However, textile/fashion industry is responsible for the production of around 92 million tonnes of non-biodegradable and highly hazardous waste at every level of processing which ultimately end up in landfills. Processing of petroleum into polyester results in the production of synthetic fibers or microplastics that can take up to 200 years to decompose which ultimately pose health risks to consumers. Along with the health risks, these synthetic fibers are responsible for the groundwater pollution, noise pollution, soil pollution, wastewater and liquid waste run off, and airborne waste. The production of microplastics emits greenhouse gas, i.e. 300 times more dangerous than carbon dioxide. Furthermore, the economy of the country also hampers by the textile waste as consumer spending increases, so does waste output from both the manufacturing and home sectors. In this way, the environment and economy both get affected by the textile industry. Owing to changing demand and technologies, the share of environment-friendly eco-textiles within international textile and apparel trade has been increasing so as to minimize hazardous effects. The ongoing research focuses to meet the environmental legislation and consumer demands for advanced, sustainable options and biopolymers are one of them.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Anastas, P.T. & Warner, J.C. (1998) Green Chemistry: Theory and Practice. Oxford University Press, New York. Anastas, P.T. & Warner, J.C. (1998) Green Chemistry: Theory and Practice. Oxford University Press, New York.
2.
Zurück zum Zitat Gadilohar, B.L. & Shankarling, G.S. (2017). Choline based ionic liquids and their applications in organic transformation. Journal of Molecular Liquids, 227, 234–261. Gadilohar, B.L. & Shankarling, G.S. (2017). Choline based ionic liquids and their applications in organic transformation. Journal of Molecular Liquids, 227, 234–261.
3.
Zurück zum Zitat Khan, S.N., Hailegiorgis, S.M., Man, Z., Shariff, A.M. & Garg, S. (2017). Thermophysical properties of concentrated aqueous solution of N-methyldiethanolamine (MDEA), piperazine (PZ), and ionic liquids hybrid solvent for CO2 capture. Journal of Molecular Liquids, 229, 221–229. Khan, S.N., Hailegiorgis, S.M., Man, Z., Shariff, A.M. & Garg, S. (2017). Thermophysical properties of concentrated aqueous solution of N-methyldiethanolamine (MDEA), piperazine (PZ), and ionic liquids hybrid solvent for CO2 capture. Journal of Molecular Liquids, 229, 221–229.
4.
Zurück zum Zitat Qin, Y. (2008). Alginate fibres: an overview of the production processes and applications in wound management, Polymer International, 57, 171–180. Qin, Y. (2008). Alginate fibres: an overview of the production processes and applications in wound management, Polymer International, 57, 171–180.
5.
Zurück zum Zitat Sharma, R. (2005). Guar gum grafting and its application in textile, Asian Journal of Experimental Sciences, 19, 77–81. Sharma, R. (2005). Guar gum grafting and its application in textile, Asian Journal of Experimental Sciences, 19, 77–81.
6.
Zurück zum Zitat Zia, K.M., Tabasum, S., Nasif, M., Sultan, N., Aslam, N., Noreen, A. & Zuber, M. (2017). A review on synthesis, properties and applications of natural polymer based carrageenan blends and composites, International Journal of Biological Macromolecule, 96, 282–301. Zia, K.M., Tabasum, S., Nasif, M., Sultan, N., Aslam, N., Noreen, A. & Zuber, M. (2017). A review on synthesis, properties and applications of natural polymer based carrageenan blends and composites, International Journal of Biological Macromolecule, 96, 282–301.
7.
Zurück zum Zitat Li, J., He, J. & Huang, Y. (2017). Role of alginate in antibacterial finishing of textiles, International Journal of Biological Macromolecule, 94, 466–473. Li, J., He, J. & Huang, Y. (2017). Role of alginate in antibacterial finishing of textiles, International Journal of Biological Macromolecule, 94, 466–473.
8.
Zurück zum Zitat Eom, S.-I. (2001). Using chitosan as an antistatic finish for polyester fabric, American Association of Textile Chemists and Colorists Review, 1, 57–60. Eom, S.-I. (2001). Using chitosan as an antistatic finish for polyester fabric, American Association of Textile Chemists and Colorists Review, 1, 57–60.
9.
Zurück zum Zitat Ranjbar-Mohammadi, M., Arami, M., Bahrami, H., Mazaheri, F. & Mahmoodi, N.M. (2010). Grafting of chitosan as a biopolymer onto wool fabric using Anhydride Bridge and its antibacterial property, Colloids and Surfaces B: Biointerfaces, 76, 397–403. Ranjbar-Mohammadi, M., Arami, M., Bahrami, H., Mazaheri, F. & Mahmoodi, N.M. (2010). Grafting of chitosan as a biopolymer onto wool fabric using Anhydride Bridge and its antibacterial property, Colloids and Surfaces B: Biointerfaces, 76, 397–403.
10.
Zurück zum Zitat Younes, B. (2017). Classification, characterization, and the production processes of biopolymers used in the textiles industry, Journal of Textile institute, 108, 674–682. Younes, B. (2017). Classification, characterization, and the production processes of biopolymers used in the textiles industry, Journal of Textile institute, 108, 674–682.
11.
Zurück zum Zitat Grzebieniarz, W., Biswas, D., Roy, S. & Jamróz, E. (2023). Advances in biopolymer-based multi-layer film preparations and food packaging applications, Food Packaging and Shelf Life, 35, 101033. Grzebieniarz, W., Biswas, D., Roy, S. & Jamróz, E. (2023). Advances in biopolymer-based multi-layer film preparations and food packaging applications, Food Packaging and Shelf Life, 35, 101033.
12.
Zurück zum Zitat Flieger, M., Kantorova, M., Prell, A., Rezanka, T. & Votruba, J. (2003) Biodegradable plastics from renewable sources, Folia Microbiologica, 48, 27–44. Flieger, M., Kantorova, M., Prell, A., Rezanka, T. & Votruba, J. (2003) Biodegradable plastics from renewable sources, Folia Microbiologica, 48, 27–44.
13.
Zurück zum Zitat Landis, A.E., Miller, S.A. & Theis, T.L. (2007). Life cycle of the corn-soybean agroecosystem for biobased production, Environment Science and Technology, 41, 1457–1464. Landis, A.E., Miller, S.A. & Theis, T.L. (2007). Life cycle of the corn-soybean agroecosystem for biobased production, Environment Science and Technology, 41, 1457–1464.
14.
Zurück zum Zitat Rehman, A., Qunyi, T., Sharif, H. R., Korma, S. A., Karim, A., Manzoor, M. F., Mehmood, A., Iqbal, M. W., Raza, H., Ali, A. & Mehmood, T. (2021). Biopolymer based nanoemulsion delivery system: An effective approach to boost the antioxidant potential of essential oil in food products, Carbohydrate Polymer Technologies and Applications, 2, 100082. Rehman, A., Qunyi, T., Sharif, H. R., Korma, S. A., Karim, A., Manzoor, M. F., Mehmood, A., Iqbal, M. W., Raza, H., Ali, A. & Mehmood, T. (2021). Biopolymer based nanoemulsion delivery system: An effective approach to boost the antioxidant potential of essential oil in food products, Carbohydrate Polymer Technologies and Applications, 2, 100082.
15.
Zurück zum Zitat Christensen, P.R., Scheuermann, A.M., Loeffler, K.E., & Helms, B.A. (2019). Closed-loop recycling of plastics enabled by dynamic covalent diketoenamine bonds. Nature Chemistry, 11, 442–448. Christensen, P.R., Scheuermann, A.M., Loeffler, K.E., & Helms, B.A. (2019). Closed-loop recycling of plastics enabled by dynamic covalent diketoenamine bonds. Nature Chemistry, 11, 442–448.
16.
Zurück zum Zitat Coates, G.W., & Getzler, Y.D.Y.L. (2020). Chemical recycling to monomer for an ideal, circular polymer economy. Nature Reviews Materials, 5, 501–516. Coates, G.W., & Getzler, Y.D.Y.L. (2020). Chemical recycling to monomer for an ideal, circular polymer economy. Nature Reviews Materials, 5, 501–516.
17.
Zurück zum Zitat Qasim, U., Osman, A. I., Al-Muhtaseb, A. H., Farrell, C., Al-Abri, M., Ali, M., Vo D. V. N., Jamil, F. & Rooney., D. W. (2021). Renewable cellulosic nanocomposities for food packaging to avaoid fossil fuel plastic pollution: a review, Environmental Chemistry Letters, 19, 613–641. Qasim, U., Osman, A. I., Al-Muhtaseb, A. H., Farrell, C., Al-Abri, M., Ali, M., Vo D. V. N., Jamil, F. & Rooney., D. W. (2021). Renewable cellulosic nanocomposities for food packaging to avaoid fossil fuel plastic pollution: a review, Environmental Chemistry Letters, 19, 613–641.
18.
Zurück zum Zitat Abel, B.A., Snyder, R.L., & Coates, G.W. (2021). Chemically recyclable thermoplastics from reversible-deactivation polymerization of cyclic acetals. Science 373, 783–789. Abel, B.A., Snyder, R.L., & Coates, G.W. (2021). Chemically recyclable thermoplastics from reversible-deactivation polymerization of cyclic acetals. Science 373, 783–789.
19.
Zurück zum Zitat Crini, N. M., Lichtfouse, E., Torri, G. & Crini, G. (2019). Applications of Chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology and environmental chemistry, Environment Chemistry Letters, 17, 1667–1692. Crini, N. M., Lichtfouse, E., Torri, G. & Crini, G. (2019). Applications of Chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology and environmental chemistry, Environment Chemistry Letters, 17, 1667–1692.
20.
Zurück zum Zitat Deweid, L., Avrutina, O., & Kolmar, H. (2019). Microbial transglutaminase for biotechnological and biomedical engineering. Biological Chemistry, 400, 257–274. Deweid, L., Avrutina, O., & Kolmar, H. (2019). Microbial transglutaminase for biotechnological and biomedical engineering. Biological Chemistry, 400, 257–274.
21.
Zurück zum Zitat Law, R.C. (2004). Applications of cellulose acetate 5.1 Cellulose acetate in textile application, Macromolecular Symposia, 208, 255–266. Law, R.C. (2004). Applications of cellulose acetate 5.1 Cellulose acetate in textile application, Macromolecular Symposia, 208, 255–266.
22.
Zurück zum Zitat Pillai, C., Paul, W. & Sharma, C.P. (2009). Chitin and chitosan polymers: chemistry, solubility and fiber formation, Progress in Polymer Science, 34, 641–678. Pillai, C., Paul, W. & Sharma, C.P. (2009). Chitin and chitosan polymers: chemistry, solubility and fiber formation, Progress in Polymer Science, 34, 641–678.
23.
Zurück zum Zitat Kumar, M.R. (1999). Chitin and chitosan fibres: a review, Bulletin of Material Science, 22, 905–915. Kumar, M.R. (1999). Chitin and chitosan fibres: a review, Bulletin of Material Science, 22, 905–915.
24.
Zurück zum Zitat Enescu, D. (2008). Use of chitosan in surface modification of textile materials, Romanian Biotechechnological Letters, 13, 4037–4048. Enescu, D. (2008). Use of chitosan in surface modification of textile materials, Romanian Biotechechnological Letters, 13, 4037–4048.
25.
Zurück zum Zitat Tridico, S. (2009). Natural animal textile fibres: structure, characteristics and identification, Identification of Textile Fibers, 27–67. Tridico, S. (2009). Natural animal textile fibres: structure, characteristics and identification, Identification of Textile Fibers, 27–67.
26.
Zurück zum Zitat Kundu, S.C., Kundu, B., Talukdar, S., Bano, S., Nayak, S., Kundu, J., Mandal, B.B., Bhardwaj, N., Botlagunta, M., Dash, B.C., Acharya, C., Ghosh, A.K. (2012). Nonmulberry silk biopolymers, Biopolymers, 97, 455–467. Kundu, S.C., Kundu, B., Talukdar, S., Bano, S., Nayak, S., Kundu, J., Mandal, B.B., Bhardwaj, N., Botlagunta, M., Dash, B.C., Acharya, C., Ghosh, A.K. (2012). Nonmulberry silk biopolymers, Biopolymers, 97, 455–467.
27.
Zurück zum Zitat Dutta, S., Pal, S., Panwar, P., Sharma, R. K. & Bhutia, P. L. (2022). Biopolymeric Nanocarriers for Nutrient Delivery and Crop Biofortification, ACS Omega. 7, 25909–25920. Dutta, S., Pal, S., Panwar, P., Sharma, R. K. & Bhutia, P. L. (2022). Biopolymeric Nanocarriers for Nutrient Delivery and Crop Biofortification, ACS Omega. 7, 25909–25920.
28.
Zurück zum Zitat Mitura S., Sionkowska, A. & Jaiswal A. (2020). Biopolymers for hydrogels in cosmetics: Review, Journal of Materials Science, 31: 50 Chemical Engineering Journal. Mitura S., Sionkowska, A. & Jaiswal A. (2020). Biopolymers for hydrogels in cosmetics: Review, Journal of Materials Science, 31: 50 Chemical Engineering Journal.
29.
Zurück zum Zitat Li, X., Ding, C., Li, X., Yang, H., Liu, S., Wang, X., Zhang, L., Sun, Q., Liu, X. & Chen, J. (2020). Electronic biopolymers: From molecular engineering to functional devices, Chemical Engineering Journal, 397, 125499. Li, X., Ding, C., Li, X., Yang, H., Liu, S., Wang, X., Zhang, L., Sun, Q., Liu, X. & Chen, J. (2020). Electronic biopolymers: From molecular engineering to functional devices, Chemical Engineering Journal, 397, 125499.
30.
Zurück zum Zitat Mulyadi, A., Zhang, Z., Dutzer, M., Liu, W. & Deng Y. (2017). Facile approach for synthesis of doped carbon electrocatalyst from cellulose nanofibrils toward high-performance metal-free oxygen reduction and hydrogen evolution, Nano Energy, 32, 336–346. Mulyadi, A., Zhang, Z., Dutzer, M., Liu, W. & Deng Y. (2017). Facile approach for synthesis of doped carbon electrocatalyst from cellulose nanofibrils toward high-performance metal-free oxygen reduction and hydrogen evolution, Nano Energy, 32, 336–346.
31.
Zurück zum Zitat Nasr., R. A., & Ali, E. A. (2022). Polyethersulfone/gelatin nano-membranes for the Rhodamine B dye removal and textile industry effluents treatment under cost effective condition, Journal of Environmental Chemical Engineering, 10, 107250. Nasr., R. A., & Ali, E. A. (2022). Polyethersulfone/gelatin nano-membranes for the Rhodamine B dye removal and textile industry effluents treatment under cost effective condition, Journal of Environmental Chemical Engineering, 10, 107250.
32.
Zurück zum Zitat Aadil, K. R., Awasthi, S., Kumar, R., Dutt, S. & Jha, H. (2023). Advanced functional nanomaterials of biopolymers: Structure, properties, and applications Functional Materials from Carbon, Inorganic, and Organic Sources Methods and Advances Woodhead Publishing Series in Electronic and Optical Materials, 521–557. Aadil, K. R., Awasthi, S., Kumar, R., Dutt, S. & Jha, H. (2023). Advanced functional nanomaterials of biopolymers: Structure, properties, and applications Functional Materials from Carbon, Inorganic, and Organic Sources Methods and Advances Woodhead Publishing Series in Electronic and Optical Materials, 521–557.
33.
Zurück zum Zitat McNeil, S. J., Gupta, H. (2022). Emerging applications of aerogels in textiles, Polymer Testing, 106, 107426. McNeil, S. J., Gupta, H. (2022). Emerging applications of aerogels in textiles, Polymer Testing, 106, 107426.
34.
Zurück zum Zitat Abdulwahid, R. T., Aziz, S. B. & Kadir, F.Z. (2023). Replacing synthetic polymer electrolytes in energy storage with flexible biodegradable alternatives: sustainable green biopolymer blend electrolyte for supercapacitor device, Materials Today Sustainability, 23, 100472. Abdulwahid, R. T., Aziz, S. B. & Kadir, F.Z. (2023). Replacing synthetic polymer electrolytes in energy storage with flexible biodegradable alternatives: sustainable green biopolymer blend electrolyte for supercapacitor device, Materials Today Sustainability, 23, 100472.
35.
Zurück zum Zitat Ilman, B. & Balkis A. P. (2023). Sustainable biopolymer stabilized earthen: Utilization of chitosan biopolymer on mechanical, durability, and microstructural properties, Journal of Building Engineering, 76, 107220. Ilman, B. & Balkis A. P. (2023). Sustainable biopolymer stabilized earthen: Utilization of chitosan biopolymer on mechanical, durability, and microstructural properties, Journal of Building Engineering, 76, 107220.
36.
Zurück zum Zitat Schiros, T. N., Mosher, C. Z., Zhu, Y., Bina, T., Gomez, V., Lee, C. L., Lu, H. & Obermeyer, A. C. (2021). Bioengineering textiles across scales for a sustainable circular economy, Chem, 7, 2913–2926. Schiros, T. N., Mosher, C. Z., Zhu, Y., Bina, T., Gomez, V., Lee, C. L., Lu, H. & Obermeyer, A. C. (2021). Bioengineering textiles across scales for a sustainable circular economy, Chem, 7, 2913–2926.
37.
Zurück zum Zitat Hong, Y., Wu, S. & Wei, G. (2023). Adverse effects of microplastics and nanoplastics on the reproductive system: A comprehensive review of fertility and potential harmful interactions, Science of The Total Environment, 903, 166258. Hong, Y., Wu, S. & Wei, G. (2023). Adverse effects of microplastics and nanoplastics on the reproductive system: A comprehensive review of fertility and potential harmful interactions, Science of The Total Environment, 903, 166258.
38.
Zurück zum Zitat Zhou, Y., Y. a, Ashokkumar, V., Amobonye, A., Bhattacharjee, G., Sirohi, R., Singh, V., Flora, G., Kumar, V., Pillai, S., Zhang, Z. & Awasthi, M. K. (2023). Current research trends on cosmetic microplastic pollution and its impacts on the ecosystem: A review, Environmental Pollution, 320, 121106. Zhou, Y., Y. a, Ashokkumar, V., Amobonye, A., Bhattacharjee, G., Sirohi, R., Singh, V., Flora, G., Kumar, V., Pillai, S., Zhang, Z. & Awasthi, M. K. (2023). Current research trends on cosmetic microplastic pollution and its impacts on the ecosystem: A review, Environmental Pollution, 320, 121106.
39.
Zurück zum Zitat Ferdinánd, M., Várdai, R., Móczó, J. & Pukánszky, B. (2023). Poly(lactic acid) reinforced with synthetic polymer fibers: interactions, structure and properties, Composites Part A: Applied Science and Manufacturing, 164, 107318. Ferdinánd, M., Várdai, R., Móczó, J. & Pukánszky, B. (2023). Poly(lactic acid) reinforced with synthetic polymer fibers: interactions, structure and properties, Composites Part A: Applied Science and Manufacturing, 164, 107318.
40.
Zurück zum Zitat Singh, R., Gautam, S., Sharma, B., Jain, P. & Chauhan, K. D. (2021). Chapter 2: Biopolymers and their classifications, Biopolymers and their Industrial Applications From Plant, Animal, and Marine Sources, to Functional Products, 21–44. Singh, R., Gautam, S., Sharma, B., Jain, P. & Chauhan, K. D. (2021). Chapter 2: Biopolymers and their classifications, Biopolymers and their Industrial Applications From Plant, Animal, and Marine Sources, to Functional Products, 21–44.
41.
Zurück zum Zitat Kumar, S. S. D., Houreld, N. N. & Abrahamse, H. (2020). Biopolymer-Based Composites for Medical Applications, Encyclopedia of Renewable and Sustainable Materials, 2, 20–28. Kumar, S. S. D., Houreld, N. N. & Abrahamse, H. (2020). Biopolymer-Based Composites for Medical Applications, Encyclopedia of Renewable and Sustainable Materials, 2, 20–28.
42.
Zurück zum Zitat Gowthaman, N.S.K., Lim, H.N., Sreeraj, T.R., Amalraj, A. & Gopi, S. (2021). Chapter 15, Advantages of biopolymers over synthetic polymers: social, economic, and environmental aspects, Biopolymers and their Industrial Applications From Plant, Animal, and Marine Sources, to Functional Products, 351–372. Gowthaman, N.S.K., Lim, H.N., Sreeraj, T.R., Amalraj, A. & Gopi, S. (2021). Chapter 15, Advantages of biopolymers over synthetic polymers: social, economic, and environmental aspects, Biopolymers and their Industrial Applications From Plant, Animal, and Marine Sources, to Functional Products, 351–372.
43.
Zurück zum Zitat Ananthi, G. B. G., Sivakumar, N., & Deepak, M.S. (2021). Experimental study of biopolymer in corrosion resistance for industrial exposure condition, Materials Today Proceedings, 44, 651–658. Ananthi, G. B. G., Sivakumar, N., & Deepak, M.S. (2021). Experimental study of biopolymer in corrosion resistance for industrial exposure condition, Materials Today Proceedings, 44, 651–658.
44.
Zurück zum Zitat Navaratnam, S., Selvaranjan, K., Jayasooriya, D., Rajeev, P. & Sanjayan, J. (2023). Applications of natural and synthetic fiber reinforced polymer in infrastructure: A suitability assessment, Journal of Building Engineering, 66, 105835. Navaratnam, S., Selvaranjan, K., Jayasooriya, D., Rajeev, P. & Sanjayan, J. (2023). Applications of natural and synthetic fiber reinforced polymer in infrastructure: A suitability assessment, Journal of Building Engineering, 66, 105835.
45.
Zurück zum Zitat Lebreton, L. & Andrady, A. (2019). Future scenarios of global plastic waste generation and disposal humanities and social sciences communications, Palgrave Communications, 5, 1–11. Lebreton, L. & Andrady, A. (2019). Future scenarios of global plastic waste generation and disposal humanities and social sciences communications, Palgrave Communications, 5, 1–11.
46.
Zurück zum Zitat Zhang, Y., Wu, P., Xu, R., Wang, X., Lei, L., Schartup, A. T., Peng, Y., Pang, Q., Wang, X., Mai, L., Wang, R., Liu, H., Wang, X., Luijendijk, A., Chassignet, E., Xu, X., Shen, H., Zheng, S. & Zeng, E. Y. (2023). Plastic waste discharge to the global ocean constrained by seawater observations, Nature Communications, 14, 1–12. Zhang, Y., Wu, P., Xu, R., Wang, X., Lei, L., Schartup, A. T., Peng, Y., Pang, Q., Wang, X., Mai, L., Wang, R., Liu, H., Wang, X., Luijendijk, A., Chassignet, E., Xu, X., Shen, H., Zheng, S. & Zeng, E. Y. (2023). Plastic waste discharge to the global ocean constrained by seawater observations, Nature Communications, 14, 1–12.
47.
Zurück zum Zitat Neves, C. V., Gaylarde, C. C., Neto, J. A. B., Vieira, K. S., Pierri, B., Waite, C. C.C., Scott, D. C., Fonseca, E. M. (2022). The transfer and resulting negative effects of nano- and micro-plastics through the aquatic trophic web—A discreet threat to human health, Water Biology and Security, 1, 100080. Neves, C. V., Gaylarde, C. C., Neto, J. A. B., Vieira, K. S., Pierri, B., Waite, C. C.C., Scott, D. C., Fonseca, E. M. (2022). The transfer and resulting negative effects of nano- and micro-plastics through the aquatic trophic web—A discreet threat to human health, Water Biology and Security, 1, 100080.
48.
Zurück zum Zitat Liu, X., Lei, T., Boré, A. Lou, Z., Abdouraman, B. & Ma., W. (2022). Evolution of global plastic waste trade flows from 2000 to 2020 and its predicted trade sinks in 2030. Journal of Cleaner Production, 376, 134373. Liu, X., Lei, T., Boré, A. Lou, Z., Abdouraman, B. & Ma., W. (2022). Evolution of global plastic waste trade flows from 2000 to 2020 and its predicted trade sinks in 2030. Journal of Cleaner Production, 376, 134373.
49.
Zurück zum Zitat Shen, M., Huang, W., Chen, M., Song, B., Zeng, G. & Zhang, Y. (2020). (Micro) plastic crisis: Un-ignorable contribution to global greenhouse gas emissions and climate change, Journal of Cleaner Production, 254, 120138. Shen, M., Huang, W., Chen, M., Song, B., Zeng, G. & Zhang, Y. (2020). (Micro) plastic crisis: Un-ignorable contribution to global greenhouse gas emissions and climate change, Journal of Cleaner Production, 254, 120138.
50.
Zurück zum Zitat Cristóbal, J., Albizzati , P. F., Giavini, M., Caro, D., Manfredi, S. & Tonini, D (2023). Management practices for compostable plastic packaging waste: Impacts, challenges and recommendations, Waste Management, 170, 166–176. Cristóbal, J., Albizzati , P. F., Giavini, M., Caro, D., Manfredi, S. & Tonini, D (2023). Management practices for compostable plastic packaging waste: Impacts, challenges and recommendations, Waste Management, 170, 166–176.
51.
Zurück zum Zitat Hildebrandt, J., Thrän, D. & Bezama, A. (2021). The circularity of potential bio-textile production routes: Comparing life cycle impacts of bio-based materials used within the manufacturing of selected leather substitutes, Journal of Cleaner Production, 287, 125470. Hildebrandt, J., Thrän, D. & Bezama, A. (2021). The circularity of potential bio-textile production routes: Comparing life cycle impacts of bio-based materials used within the manufacturing of selected leather substitutes, Journal of Cleaner Production, 287, 125470.
52.
Zurück zum Zitat Kim, T., Kim, D. & Park, Y. (2022). Recent progress in regenerated fibers for “green” textile products, Journal of Cleaner Production, 376, 134226. Kim, T., Kim, D. & Park, Y. (2022). Recent progress in regenerated fibers for “green” textile products, Journal of Cleaner Production, 376, 134226.
53.
Zurück zum Zitat Oliveira, C. R. S., Júnior, A. H. S., Mulinari, J. & Immich, A. P. S. (2021). Textile Re-Engineering: Eco-responsible solutions for a more sustainable industry, Sustainable Production and Consumption, 28, 1232–1248. Oliveira, C. R. S., Júnior, A. H. S., Mulinari, J. & Immich, A. P. S. (2021). Textile Re-Engineering: Eco-responsible solutions for a more sustainable industry, Sustainable Production and Consumption, 28, 1232–1248.
54.
Zurück zum Zitat Akram, M., Kumar, C., Parkash, Chachar, F. A. & A. Khans (2022). A Study on Waste Disposal Management in Textile Industry: A Case Study of Gul Ahmed, South Asian Management Review, 1, 14–36. Akram, M., Kumar, C., Parkash, Chachar, F. A. & A. Khans (2022). A Study on Waste Disposal Management in Textile Industry: A Case Study of Gul Ahmed, South Asian Management Review, 1, 14–36.
Metadaten
Titel
Environmental Impact and Economic Benefits of Biopolymers in the Textile Industry
verfasst von
Heena Gupta
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-0684-6_9

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.