Skip to main content

2024 | OriginalPaper | Buchkapitel

3. Fully Nonlinear Equations

verfasst von : Xavier Fernández-Real, Xavier Ros-Oton

Erschienen in: Integro-Differential Elliptic Equations

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, we develop the theory of fully nonlinear nonlocal elliptic equations. We begin with the definition of viscosity solutions and their existence and then prove the Harnack inequality and Hölder estimates for equations with “bounded measurable coefficients.” After that, we establish the main interior regularity estimates in both the general and the concave/convex case and conclude with a brief discussion of some open problems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1

Notice that if we wanted to maximize the payoff, we could simply consider \(-g\) instead of g.

 
2

Namely, two players with conflicting interests govern the evolution of the particle by choosing from different sets of indices.

 
3

We apply Proposition 3.2.17 to the operator \(\mathcal {I}_g(u, x) = \mathcal {I}(u, x) - g\) (and \(\mathcal {I}_f(u, x) = \mathcal {I}(u, x) - f\)), where we are considering the new \(c_{ab}^{\prime }(x) = c_{ab}(x) - f(x)\), that are still equicontinuous in \(\overline {D}\).

 
4

This is satisfied, for example, by any test function \(\eta \in C^\infty _c(\mathbb {R}^n)\) such that \(0 \le \eta \le M\) and \(\eta \equiv M\) in D if M is large enough.

 
5

More precisely, the term on the left-hand side of the estimate in Theorem 3.3.1 is a global \(L^1_{\omega _s}\) norm of the solution, while in the local case this would be a local \(L^1\) norm in \(B_{1/2}\). Of course, this comes at a price, which is that the constant C blows up as \(s\uparrow 1\).

 
6

The \(\inf \sup \) of \(C^\mu \) functions is \(C^\mu \), whenever \(\mu <1\). If \(\mu \ge 1\), then it is at most Lipschitz (\(C^{0,1}\)). This is why this proof does not obtain higher regularity even if \(\theta \gg 1\).

 
7

Actually, \(\omega (r) = Cr^\delta + \sigma (r)\).

 
8

If \(f \not \equiv 0\), we would have now \(\mathcal {I}_\varepsilon (v, x) - (f*\varphi _\varepsilon )(x)\) as a regularized version of \(\mathcal {I}(v, x) - f(x)\), since \(\sum _{i, j} M_{ij} = 1\).

 
9

It is important to notice that \(\mathcal S\) depends only on n, s, \(\alpha \), and \(\Lambda \). This is what gives the dependence of the constant \(C_\delta \).

 
Literatur
  1. G. Barles, E. Chasseigne, C. Imbert, The Dirichlet problem for second-order elliptic integro-differential equations. Indiana Univ. Math. J. 57, 213–146 (2008)MathSciNetView Article
  2. G. Barles, E. Chasseigne, C. Imbert, Hölder continuity of solutions of second-order elliptic integro-differential equations. J. Eur. Math. Soc. 13, 1–26 (2011)MathSciNetView Article
  3. G. Barles, C. Imbert, Second-order elliptic integro-differential equations: viscosity solutions’ theory revisited. Ann. Inst. H. Poincaré Anal. Non Linéaire 25, 567–585 (2008)MathSciNetView Article
  4. L. Caffarelli, X. Cabré, Fully Nonlinear Elliptic Equations. American Mathematical Society Colloquium Publications, vol. 43 (American Mathematical Society, Providence, 1995)
  5. L. Caffarelli, Interior a priori estimates for solutions of fully nonlinear equations. Ann. Math. 130, 189–213 (1989)MathSciNetView Article
  6. L. Caffarelli, L. Silvestre, Regularity theory for fully nonlinear integro-differential equations. Comm. Pure Appl. Math. 62, 597–638 (2009)MathSciNetView Article
  7. L. Caffarelli, L. Silvestre, The Evans-Krylov theorem for nonlocal fully nonlinear equations. Ann. Math. 174, 1163–1187 (2011)MathSciNetView Article
  8. L. Cafarelli, L. Silvestre, Regularity results for nonlocal equations by approximation. Arch. Ration. Mech. Anal. 200, 59–88 (2011)MathSciNetView Article
  9. H. Chang-Lara, G. Davila, Regularity for solutions of nonlocal, nonsymmetric equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 29, 833–859 (2012)MathSciNetView Article
  10. H. Chang-Lara, G. Davila, Hölder estimates for nonlocal parabolic equations with critical drift. J. Differential Equations 260, 4237–4284 (2016)MathSciNetView Article
  11. H. Chang-Lara, D. Kriventsov, Further time regularity for non-local, fully non-linear parabolic equations. Comm. Pure Appl. Math. 70 (2017), 950–977.MathSciNetView Article
  12. M.G. Crandall, P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations. Trans. Am. Math. Soc. 277, 1–42 (1983)MathSciNetView Article
  13. S. Dipierro, X. Ros-Oton, J. Serra, E. Valdinoci, Non-symmetric stable operators: regularity theory and integration by parts. Adv. Math. 401, 108321, 100p (2022)
  14. H. Dong, H. Zhang, On Schauder estimates for a class of nonlocal fully nonlinear parabolic equations. Calc. Var. Partial Differential Equations 58, 40 (2019)MathSciNetView Article
  15. L.C. Evans, Classical solutions of fully nonlinear, convex, second-order elliptic equations. Comm. Pure Appl. Math. 35, 333–363 (1982)MathSciNetView Article
  16. X. Fernández-Real, Smooth approximations for fully nonlinear nonlocal elliptic equations. Trans. Am. Math. Soc. 377, 495–515 (2024)MathSciNet
  17. X. Fernández-Real, X. Ros-Oton, Regularity Theory for Elliptic PDE. Zurich Lectures in Advanced Mathematics (EMS Books, New York, 2022)
  18. X. Fernández-Real, X. Ros-Oton, Schauder and Cordes-Nirenberg estimates for nonlocal elliptic equations with singular kernels, preprint arXiv (2023)
  19. N. Guillén, R. Schwab, Aleksandrov-Bakelman-Pucci type estimates for integro-differential equations. Arch. Ration. Mech. Anal. 206, 111–157 (2012)MathSciNetView Article
  20. N. Guillén, R. Schwab, Min-max formulas for nonlocal elliptic operators. Calc. Var. Partial Differential Equations 58, 209 (2019)MathSciNetView Article
  21. N. Guillén, R. Schwab, Min-max formulas for nonlocal elliptic operators on Euclidean space. Nonlinear Anal. 193, 111468 (2020)MathSciNetView Article
  22. R. Jensen, The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations. Arch. Ration. Mech. Anal. 101, 1–27 (1988)MathSciNetView Article
  23. D. Jerison, C. Kenig, Boundary behavior of harmonic functions in non-tangentially accessible domains. Adv. Math. 46, 80–147 (1982)MathSciNetView Article
  24. T. Jin, J. Xiong, Schauder estimates for nonlocal fully nonlinear equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 33, 1375–1407 (2016)MathSciNetView Article
  25. M. Kassmann, A. Mimica, Intrinsic scaling properties for nonlocal operators. J. Eur. Math. Soc. 19, 983–1011 (2017)MathSciNetView Article
  26. D. Kriventsov, C1, α interior regularity for nonlinear nonlocal elliptic equations with rough kernels. Comm. Partial Differential Equations 38, 2081–2106 (2013)MathSciNetView Article
  27. N.V. Krylov, Boundedly inhomogeneous elliptic and parabolic equations. Izv. Akad. Nauk SSSR Ser. Mat. 46, 487–523 (1982)MathSciNet
  28. N.V. Krylov, M.V. Safonov, An estimate for the probability of a diffusion process hitting a set of positive measure. Doklady Akademii Nauk SSSR 245, 18–20 (1979)MathSciNet
  29. P.L. Lions, Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations part I: the dynamic programming principle and applications. Comm. Partial Differential Equations 8, 1101–1174 (1983)MathSciNetView Article
  30. P. L. Lions, Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations part II: viscosity solutions and uniqueness, Comm. Partial Differential Equations 8, 1229–1276 (1983)MathSciNetView Article
  31. C. Mou, Perron’s method for nonlocal fully nonlinear equations. Anal. PDE 10, 1227–1254 (2017)MathSciNetView Article
  32. N. Nadirashvili, V. Tkachev, S. Vladuts, Nonlinear Elliptic Equations and Nonassociative Algebras. AMS Mathematical Surveys and Monographs (2014)
  33. X. Ros-Oton, J. Serra, Boundary regularity for fully nonlinear integro-differential equations. Duke Math. J. 165, 2079–2154 (2016)MathSciNetView Article
  34. X. Ros-Oton, J. Serra, The boundary Harnack principle for nonlocal elliptic equations in nondivergence form. Potential Anal. 51, 315–331 (2019)MathSciNetView Article
  35. R.W. Schwab, L. Silvestre, Regularity for parabolic integro-differential equations with very irregular kernels. Anal. PDE 9, 727–772 (2016)MathSciNetView Article
  36. J. Serra, Regularity for fully nonlinear nonlocal parabolic equations with rough kernels. Calc. Var. Partial Differential Equations 54, 615–629 (2015)MathSciNetView Article
  37. J. Serra, Cσ+α regularity for concave nonlocal fully nonlinear elliptic equations with rough kernels. Calc. Var. Partial Differential Equations 54, 3571–3601 (2015)MathSciNetView Article
  38. L. Silvestre, Hölder estimates for solutions of integro differential equations like the fractional Laplacian. Indiana Univ. Math. J. 55, 1155–1174 (2006)MathSciNetView Article
  39. L. Silvestre, Viscosity solutions to elliptic equations, in Lecture Notes available at the webpage of the author
  40. L. Silvestre, Lecture notes on nonlocal equations, in Lecture Notes available at the webpage of the author
  41. H. Yu, Wσ, ε-estimates for nonlocal elliptic equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 34, 1141–1153 (2017)MathSciNetView Article
Metadaten
Titel
Fully Nonlinear Equations
verfasst von
Xavier Fernández-Real
Xavier Ros-Oton
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-54242-8_3

Premium Partner