Skip to main content

2024 | OriginalPaper | Buchkapitel

2. Linear Integro-differential Equations

verfasst von : Xavier Fernández-Real, Xavier Ros-Oton

Erschienen in: Integro-Differential Elliptic Equations

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, we study general elliptic operators of order 2s, which are linear and translation invariant. We start with their probabilistic motivation and then move on to establishing their basic properties and different notions of solution (strong, weak, and distributional). After that, we develop the interior regularity theory for these operators and then extend it to the more general setting of x-dependent operators, both in divergence and in non-divergence form. Finally, we study the Hölder regularity of solutions up to the boundary and conclude the chapter by presenting some further results and open problems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1

We define it with a minus sign in front for future convenience.

 
2

General operators of the form (2.1.10) are called pseudodifferential operators (\(\psi \)do); we refer to [139] or [129] for a nice introduction.

 
3

When \(A>0\), the corresponding operators are of second order with lower-order nonlocal terms. We refer to [118] for a study of such operators.

 
4

Recall from the definition of Lévy process, Definition 2.1.1, that we do not necessarily have continuous paths, so in the first hitting time it is not necessarily true that \(x+X_{\tau _x}\in \partial \Omega \). Still, we are working with càdlàg modifications of the underlying processes, and hence, \(\tau _x\) is a stopping time.

 
5
In the local case, when \(\alpha = 2\) this is typically required in the form \(A \ge \tilde \lambda \, \mathrm {Id}\) for some \(\tilde \lambda > 0\), or alternatively
$$\displaystyle \begin{aligned} \inf_{{\boldsymbol{e}} \in \mathbb{S}^{n-1}} {\boldsymbol{e}} \cdot A {\boldsymbol{e}} \ge \tilde \lambda > 0. \end{aligned}$$

This ensures that the matrix A does not degenerate in any direction.

 
6

A measure \(\mu \) is rotationally invariant if \(\mu (B) = \mu (O B)\) for any orthogonal transformation \(O\in \mathcal {O}(n)\) and for any Borel set \(B\subset \mathbb {R}^n\).

 
7

This can be seen either through the properties of the Fourier transform or by means of the equivalent ellipticity conditions (2.1.25)–(2.1.26).

 
8

Observe that, in this case, given \(\rho \in \mathbb {R}\setminus \{0\}\), we have \(K(\rho \, dy) = |\rho |{ }^n K(\rho y)\, dy\).

 
9

Notice, though, that there are purely singular measures for which \([K]_\alpha \) is finite.

 
10

Observe that we can use it, since \(\mathcal {L} v \in L^1(\mathbb {R}^n)\cap L^\infty (\mathbb {R}^n)\) by Lemma 2.2.11, and hence \(\mathcal {L} v\in L^2(\mathbb {R}^n)\).

 
11

We note that the first term in (2.2.26) is the analogue of the Dirichlet energy, \(\frac 12\int |\nabla u|{ }^2\), in the local case \(s = 1\) with \(\mathcal {L} = -\Delta \). The constant \(1/4\) appears here because the integration by parts in Lemma 2.2.16 holds for the scalar product (2.2.15), which has a constant \(1/2\) in front.

 
12
If K is a measure, one can define first the locally finite measure \(\mu (d y) = \min \{1, |y|{ }^2\} K(dy)\) (since (2.1.28) holds) and then prove instead that
$$\displaystyle \begin{aligned} u(x) \frac{2v(x) - v(x+y)-v(x-y)}{\min\{1,|y|{}^2\}}\in L^1(\mathbb{R}^n\times\mathbb{R}^n; dx\otimes \mu(dy)). \end{aligned}$$
 
13

When \(K > 0\) in \(\mathbb {R}^n\), such argument already yields a strong maximum principle, since one has \(\mathcal {L} u(x_\circ ) > 0\) unless u is constant. However, for \(\mathcal {L} \in {\mathfrak {G}_s(\lambda , \Lambda )}\), the strong maximum principle turns out to be more delicate; see Sect. 2.4.6.

 
14

We are using here that if \(u_r(x) := u(rx)\), then \(\|u_r\|{ }_{L^\infty _{2s-\varepsilon }(\mathbb {R}^n)}\le \|u\|{ }_{L^\infty _{2s-\varepsilon }(\mathbb {R}^n)}\) for \(r < 1\), and that if \(\mathcal {L} u = f\), then there exists some \(\mathcal {L}_r\in {\mathfrak {G}_s(\lambda , \Lambda )}\) such that \(\mathcal {L}_r u_r (x) = r^{2s} f(rx)\) (see Remark 2.1.19), so that the same estimate applies.

 
15

This also happens for operators in divergence form \(\mathrm {div}(A(x) \nabla u)\) in the local case \(s = 1\).

 
16

See [199] for the case of non-homogeneous kernels.

 
17

See also [165, 166] for regularity results in \(L^p\) spaces.

 
Literatur
  1. N. Abatangelo, X. Ros-Oton, Obstacle problems for integro-differential operators: higher regularity of free boundaries. Adv. Math. 360, 106931, 61pp (2020)
  2. H. Abels, G. Grubb, Fractional-order operators on nonsmooth domains. J. Lond. Math. Soc. 107, 1297–1350 (2023)MathSciNetView Article
  3. N. Alibaud, F. Del Teso, J. Endal, E. Jakobsen, The Liouville theorem and linear operators satisfying the maximum principle. J. Math. Pures Appl. 142, 229–242 (2020)MathSciNetView Article
  4. B. Barrios, A. Figalli, E. Valdinoci, Bootstrap regularity for integro-differential operators and its application to nonlocal minimal surfaces. Ann. Sc. Norm. Super. Pisa Cl. Sci. 13, 609–639 (2014)MathSciNet
  5. R. Bass, Regularity results for stable-like operators. J. Funct. Anal. 257, 2693–2722 (2009)MathSciNetView Article
  6. R. Bass, Z.-Q. Chen, Regularity of harmonic functions for a class of singular stable-like processes. Math. Zeit. 266, 489–503 (2010)MathSciNetView Article
  7. R. Bass, D. Levin, Harnack inequalities for jump processes. Potential Anal. 17, 375–382 (2002)MathSciNetView Article
  8. R. Bass, D. Levin, Transition probabilities for symmetric jump processes. Trans. Am. Math. Soc. 354, 2933–2953 (2002)MathSciNetView Article
  9. J. Bertoin, Lévy processes, in Cambridge Tracts in Mathematics, Series Number 121 (1996)
  10. V. Bogachev, Measure Theory, vol. I (Springer, Berlin, 2007)View Article
  11. K. Bogdan, P. Sztonyk, Harnack’s inequality for stable Lévy processes. Potential Anal. 22, 133–150 (2005)MathSciNetView Article
  12. K. Bogdan, P. Sztonyk, Estimates of the potential kernel and Harnack’s inequality for the anisotropic fractional Laplacian. Studia Math. 181, 101–123 (2007)MathSciNetView Article
  13. J.P. Borthagaray, R.H. Nochetto, Besov regularity for the Dirichlet integral fractional Laplacian in Lipschitz domains. J. Funct. Anal. 284, 109829 (2023)MathSciNetView Article
  14. B. Bötthcer, R. Schilling, J. Wang, Lévy Matters III. Lévy-type Processes: Construction, Approximation, and Sample Path Properties. Lecture Notes in Mathematics (Springer, Cham, 2013)
  15. L. Caffarelli, C.H. Chan, A. Vasseur, Regularity theory for parabolic nonlinear integral operators. J. Am. Math. Soc. 24, 849–869 (2011)MathSciNetView Article
  16. L. Caffarelli, L. Silvestre, Regularity theory for fully nonlinear integro-differential equations. Comm. Pure Appl. Math. 62, 597–638 (2009)MathSciNetView Article
  17. L. Caffarelli, L. Silvestre, The Evans-Krylov theorem for nonlocal fully nonlinear equations. Ann. Math. 174, 1163–1187 (2011)MathSciNetView Article
  18. L. Cafarelli, L. Silvestre, Regularity results for nonlocal equations by approximation. Arch. Ration. Mech. Anal. 200, 59–88 (2011)MathSciNetView Article
  19. J. Chaker, L. Silvestre, Coercivity estimates for integro-differential operators. Calc. Var. Partial Differential Equations 59, 106 (2020)MathSciNetView Article
  20. Z. Chen, P. Kim, R. Song, Heat kernel estimates for the Dirichlet fractional Laplacian. J. Eur. Math. Soc. 12, 1307–1329 (2010)MathSciNetView Article
  21. Z. Chen, T. Kumagai, Heat kernel estimates for stable-like processes on d-sets. Stochastic Process. Appl. 108, 27–62 (2003)MathSciNetView Article
  22. Z. Chen, T. Kumagai, J. Wang, Stability of parabolic Harnack inequalities for symmetric non-local Dirichlet forms. J. Eur. Math. Soc. 22, 3747–3803 (2010)MathSciNetView Article
  23. P. Courrège, Sur la forme intégro-différentielle des opérateurs de \(C^\infty _k\) dans C satisfaisant au principe du maximum. Séminaire Brelot-Choquet-Deny. Théorie du Potentiel 10, 1–38 (1965/66)
  24. M. Cozzi, Regularity results and Harnack inequalities for minimizers and solutions of nonlocal problems: a unified approach via fractional De Giorgi classes. J. Funct. Anal. 272, 4762–4837 (2017)MathSciNetView Article
  25. A. Di Castro, T. Kuusi, G. Palatucci, Nonlocal Harnack inequalities. J. Funct. Anal. 267, 1807–1836 (2014)MathSciNetView Article
  26. A. Di Castro, T. Kuusi, G. Palatucci, Local behavior of fractional p-minimizers. Ann. Inst. H. Poincaré Anal. Non Linéaire 33, 1279–1299 (2016)MathSciNetView Article
  27. E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)MathSciNetView Article
  28. S. Dipierro, O. Savin, E. Valdinoci, Definition of fractional Laplacian for functions with polynomial growth. Rev. Mat. Iberoam. 35, 1079–1122 (2019)MathSciNetView Article
  29. S. Dipierro, X. Ros-Oton, J. Serra, E. Valdinoci, Non-symmetric stable operators: regularity theory and integration by parts. Adv. Math. 401, 108321, 100p (2022)
  30. H. Dong, J. Ryu, Nonlocal elliptic and parabolic equations with general stable operators in weighted Sobolev spaces, preprint arXiv (2023)
  31. B. Dyda, M. Kassmann, Regularity estimates for elliptic nonlocal operators. Anal. PDE 13, 317–370 (2020)MathSciNetView Article
  32. D.E. Edmunds, W.D. Evans, Fractional Sobolev Spaces and Inequalities (Cambridge University, Cambridge, 2022)View Article
  33. L.C. Evans, An Introduction to Stochastic Differential Equations (American Mathematical Society, New York, 2013)View Article
  34. M.M. Fall, Regularity results for nonlocal equations and applications. Calc. Var. Partial Differential Equations 59, 181 (2020)MathSciNetView Article
  35. M.M. Fall, T. Weth, Liouville theorems for a general class of nonlocal operators. Potential Anal. 45, 187–200 (2016)MathSciNetView Article
  36. W. Feller, An Introduction to Probability Theory and Its Applications, vol 2, 2nd edn. (Wiley, New York, 1971)
  37. M. Felsinger, M. Kassmann, P. Voigt, The Dirichlet problem for nonlocal operators. Math. Z. 279, 779–809 (2015)MathSciNetView Article
  38. X. Fernández-Real, Smooth approximations for fully nonlinear nonlocal elliptic equations. Trans. Am. Math. Soc. 377, 495–515 (2024)MathSciNet
  39. X. Fernández-Real, X. Ros-Oton, Regularity theory for general stable operators: parabolic equations. J. Funct. Anal. 272, 4165–4221 (2017)MathSciNetView Article
  40. X. Fernández-Real, X. Ros-Oton, Regularity Theory for Elliptic PDE. Zurich Lectures in Advanced Mathematics (EMS Books, New York, 2022)
  41. X. Fernández-Real, X. Ros-Oton, Schauder and Cordes-Nirenberg estimates for nonlocal elliptic equations with singular kernels, preprint arXiv (2023)
  42. A. Figalli, F. Glaudo, An Invitation to Optimal Transport, Wasserstein Distances, and Gradient Flows. EMS Textbooks in Mathematics (European Mathematical Society (EMS), Zürich, 2021)
  43. M. Garroni, J. Menaldi, Second Order Elliptic Integro-Differential Problems. Research Notes in Mathematics, vol. 430 (Chapman & Hall/CRC, New York, 2002)
  44. G. Grubb, Local and nonlocal boundary conditions for μ-transmission and fractional elliptic pseudodifferential operators. Anal. PDE 7, 1649–1682 (2014)MathSciNetView Article
  45. G. Grubb, Fractional Laplacians on domains, a development of Hörmander’s theory of μ-transmission pseudodifferential operators. Adv. Math. 268, 478–528 (2015)MathSciNetView Article
  46. G. Grubb, Fourier methods for fractional-order operators, in Proceedings of the RIMS Symposium “Harmonic Analysis and Nonlinear Partial Differential Equations” (2022)
  47. F. Grube, T. Hensiek, Robust nonlocal trace spaces and Neumann problems, (2022). https://​www.​sciencedirect.​com/​science/​article/​abs/​pii/​S0362546X2300273​0
  48. T. Grzywny, M. Kwaśnicki, Liouville’s theorem for Lévy operators, preprint arXiv (2023)
  49. L.G. Hanin, Kantorovich-Rubinstein norm and its application in the theory of Lipschitz spaces. Proc. Am. Math. Soc. 115, 345–352 (1992)MathSciNetView Article
  50. L.G. Hanin, An extension of the Kantorovich norm, in Monge Ampère Equation: Applications to Geometry and Optimization. Contemporary Mathematics, vol. 226 (American Mathematical Society, New York, 1999), pp. 113–130
  51. L. Hörmander, Ch. II, Boundary value problems for “classical” pseudo-differential operators, in 1965–66, Lecture Notes at IAS Princeton, available from Lund University. https://​lup.​lub.​lu.​se/​search/​
  52. L. Hörmander, The Analysis of Linear Partial Differential Operators III. Pseudo-Differential Operators. Classics in Mathematics (Springer, Berlin, 2007)
  53. C. Imbert, L. Silvestre, Weak Harnack inequality for the Boltzmann equation without cut-off. J. Eur. Math. Soc. 22, 507–592 (2020)MathSciNetView Article
  54. C. Imbert, L. Silvestre, The Schauder estimate for kinetic integral equations. Anal. PDE 14, 171–204 (2021)MathSciNetView Article
  55. T. Jin, J. Xiong, Schauder estimates for nonlocal fully nonlinear equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 33, 1375–1407 (2016)MathSciNetView Article
  56. M. Kassmann, A priori estimates for integro-differential operators with measurable kernels. Calc. Var. Partial Differ. Equations 34, 1–21 (2009)MathSciNetView Article
  57. M. Kassmann, B. Dyda, Function spaces and extension results for nonlocal Dirichlet problems. J. Funct. Anal. 277, 108134 (2019)MathSciNetView Article
  58. M. Kassmann, A. Mimica, Intrinsic scaling properties for nonlocal operators. J. Eur. Math. Soc. 19, 983–1011 (2017)MathSciNetView Article
  59. D. Khoshnevisan, R. Schilling, From Lévy-Type Processes to Parabolic SPDEs. Advanced Courses in Mathematics CRM Barcelona (Birkhäuser, Basel, 2016)
  60. T. Kuusi, G. Mingione, Y. Sire, Nonlocal self-improving properties. Anal. PDE 8, 57–114 (2015)MathSciNetView Article
  61. T. Kuusi, S. Nowak, Y. Sire, Gradient regularity and first-order potential estimates for a class of nonlocal equations, preprint arXiv (2022)
  62. G. Leoni, A First Course in Fractional Sobolev Spaces (American Mathematical Society, New York, 2023)View Article
  63. G. Molica Bisci, V.D. Radulescu, R. Servadei, Variational Methods for Nonlocal Fractional Problems. Encyclopedia of Mathematics and its Applications, vol. 162 (Cambridge University Press, Cambridge, 2016)
  64. G. Palatucci, T. Kuusi (eds.) Recent Developments in Nonlocal Theory (De Gruyter, Berlin, 2017)
  65. A. Ponce, Elliptic PDEs, Measures and Capacities. EMS Tracts in Mathematics, vol. 23 (European Mathematical Society, Zürich, 2016)
  66. X. Ros-Oton, J. Serra, The Dirichlet problem for the fractional Laplacian: regularity up to the boundary. J. Math. Pures Appl. 101, 275–302 (2014)MathSciNetView Article
  67. X. Ros-Oton, J. Serra, Regularity theory for general stable operators. J. Differential Equations 260, 8675–8715 (2016)MathSciNetView Article
  68. X. Ros-Oton, J. Serra, Boundary regularity estimates for nonlocal elliptic equations in C1 and C1, α domains. Ann. Mat. Pura Appl. 196, 1637–1668 (2017)MathSciNetView Article
  69. X. Ros-Oton, M. Weidner, Optimal regularity for nonlocal elliptic equations and free boundary problems, preprint arXiv (2024)
  70. G. Samorodnitsky, M. Taqqu, Stable Non-Gaussian Processes: Stochastic Models with Infinite Variance (Chapman and Hall/CRC, New York, 1994)
  71. K. Sato, Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies in Advanced Mathematics, vol. 68 (Cambridge University Press, Cambridge, 1999)
  72. O. Savin, E. Valdinoci, Density estimates for a nonlocal variational model via the Sobolev inequality. SIAM J. Math. Anal. 43, 2675–2687 (2011)MathSciNetView Article
  73. R.W. Schwab, L. Silvestre, Regularity for parabolic integro-differential equations with very irregular kernels. Anal. PDE 9, 727–772 (2016)MathSciNetView Article
  74. J. Serra, Regularity for fully nonlinear nonlocal parabolic equations with rough kernels. Calc. Var. Partial Differential Equations 54, 615–629 (2015)MathSciNetView Article
  75. J. Serra, Cσ+α regularity for concave nonlocal fully nonlinear elliptic equations with rough kernels. Calc. Var. Partial Differential Equations 54, 3571–3601 (2015)MathSciNetView Article
  76. L. Silvestre, Hölder estimates for solutions of integro differential equations like the fractional Laplacian. Indiana Univ. Math. J. 55, 1155–1174 (2006)MathSciNetView Article
  77. L. Silvestre, Regularity estimates for parabolic integro-differential equations and applications, in Proceedings of the ICM (2014)
  78. L. Simon, Schauder estimates by scaling. Calc. Var. Partial Differential Equations 5, 391–407 (1997)MathSciNetView Article
  79. E. Stein, Singular Integrals and Differentiability Properties of Functions, in Princeton Mathematical Series No. 30 (1970)
  80. H. Triebel, Theory of Function Spaces II (Birkhäuser, Basel, 1992)
Metadaten
Titel
Linear Integro-differential Equations
verfasst von
Xavier Fernández-Real
Xavier Ros-Oton
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-54242-8_2

Premium Partner