Skip to main content

2023 | OriginalPaper | Buchkapitel

3. Hilbert Space Modelling with Applications in Classical Optics, Human Cognition, and Game Theory

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter we provide first a basic introduction to Hilbert space modelling, and its applications outside typical quantum mechanics, for example in classical optics, and human cognition. We then present briefly our framework of human cognition model, which we have called, COM: classical optical modelling. Though our chapter is based on the background of and in the wake of quantum-like modelling in cognition, game theory, and different social science areas, our approach differs from the extant models since we follow the Hilbert space modelling in classical optics, with novel features like classical entanglement which can also be exploited in game theory. Hence, we aim to contribute in cognition as well as quantum-like modelling in game theory.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
One anecdotal story goes that David Hilbert, the great German Mathematician, on whose name Neumann named this formulation, was rather oblivious of the fact. In one seminar where Neumann lectured on the properties and applications of Hilbert space, in the end, up went a hand asking but what is a ‘Hilbert’ space? The man was Hilbert himself.
 
2
In modern representations, in case of a product state, the amplitude of the total system is written as a product of amplitudes (outer product to be specific) of its subsystems’ wave functions, but for entangled states, one needs to sum over the proper number of indices to have the amplitude for the total system. A low entanglement state is one where the number of indices to sum over is minimum. For example, if the number is one, then we are dealing with a product state. The number of indices which one has to sum over is often called as bond or auxiliary dimension.
 
3
Here we may think of ‘the Hilbert space’ as an abstract representation, and ‘Hilbert spaces, H’ as concrete Hilbert spaces which are constructed for specific models.
 
4
Any vector ψ ϵ H1 ⊗ H2 such that |ϒ > and |λ > are orthonormal basis in H1 and H2 respectively, can be expressed as ψ = Σcjj > |λj > , where c s are positive non negative. Again if we have two observables A and B elements of H1 and H2 respectively, then < ψ|(A ⊗ I)|ψ >  = Trace (Aρ1) and < ψ|(I ⊗ B)|ψ >  = Trace (Bρ2), where ρ1 and ρ2 operates on respective Hilbert spaces, and |ϒ > and |λ > s can be eigen vectors for respective density operators, and eigen values of ρ1, say {pj} will be given by cj = √pj in the current example we have two subspaces of same dimensions, but the decomposition formulation holds for any partitions. For example if we have a 5 Qbit space over all, and we partition the space into sub space A of 2 Qbit, such that A is spanned by 4 basis vectors, and sub space B of 3 Qbit space, such that B is spanned by 23 or 8 basis vectors, we will still have the above decomposition formula for ψ, such that the summation index will be over 4, or the no of basis states for the lower dimensional subspace.
Another important concept is of Schimdt number. For example we start with a pure state such as ψ as in the example here, now if we perform a partial trace over it, such that we get back the density matrix of one of the subsystems, then the no of non-zero coefficients in the density matrix representation of that subsystem: ρ = ∑pjj >  < ϒj|, will be a measure of degree of entanglement in ψ, this is the Schimdt number.
In general we know that from a higher dimensional Hilbert space pure state we can arrive at a lower dimensional mixed state via partial tracing, the converse of this is termed as purification.
 
5
Here we mention that the commutation relations between cognitive variables are not as ‘naturally’ perceived as in standard QM, there is no general theory of commutative relations between cognitive variables, and contextuality may play a deeper role here.
 
6
Poincare sphere is a widely used tool for describing states, like polarization states in Optics as well as in information theory in general. https://​encyclopediaofma​th.​org/​wiki/​Poincar%C3%A9_​sphere.
 
Literatur
Zurück zum Zitat Adhikary, S., Srinivasan, S., Miller, J., Rabusseau, G., Boots, B.: Quantum tensor networks, stochastic processes, and weighted automata. In: International Conference on Artificial Intelligence and Statistics, pp. 2080–2088. PMLR (2021) Adhikary, S., Srinivasan, S., Miller, J., Rabusseau, G., Boots, B.: Quantum tensor networks, stochastic processes, and weighted automata. In: International Conference on Artificial Intelligence and Statistics, pp. 2080–2088. PMLR (2021)
Zurück zum Zitat Birkhoff, G., Von Neumann, J.: The logic of quantum mechanics. Ann. Math. 823–843 (1936) Birkhoff, G., Von Neumann, J.: The logic of quantum mechanics. Ann. Math. 823–843 (1936)
Zurück zum Zitat Busch, P.: Quantum states and generalized observables: a simple proof of Gleason’s theorem. Phys. Rev. Lett. 91(12), 120403 (2003)CrossRef Busch, P.: Quantum states and generalized observables: a simple proof of Gleason’s theorem. Phys. Rev. Lett. 91(12), 120403 (2003)CrossRef
Zurück zum Zitat Busemeyer, J.R., Wang, Z., Townsend, J.T.: Quantum dynamics of human decision-making. J. Math. Psychol. 50(3), 220–241 (2006)CrossRef Busemeyer, J.R., Wang, Z., Townsend, J.T.: Quantum dynamics of human decision-making. J. Math. Psychol. 50(3), 220–241 (2006)CrossRef
Zurück zum Zitat Dirac, P.A.M.: The Principles of Quantum Mechanics (No. 27). Oxford University Press (1981) Dirac, P.A.M.: The Principles of Quantum Mechanics (No. 27). Oxford University Press (1981)
Zurück zum Zitat Dzhafarov, E.N., Kujala, J.V.: Context–content systems of random variables: The contextuality-by-default theory. J. Math. Psychol. 74, 11–33 (2016)CrossRef Dzhafarov, E.N., Kujala, J.V.: Context–content systems of random variables: The contextuality-by-default theory. J. Math. Psychol. 74, 11–33 (2016)CrossRef
Zurück zum Zitat Egger, D.J., Gambella, C., Marecek, J., McFaddin, S., Mevissen, M., Raymond, R., Simonetto, A., Woerner, S., Yndurain, E.: Quantum computing for finance: State-of-the-art and future prospects. IEEE Trans. Quant. Eng. 1, 1–24 (2020)CrossRef Egger, D.J., Gambella, C., Marecek, J., McFaddin, S., Mevissen, M., Raymond, R., Simonetto, A., Woerner, S., Yndurain, E.: Quantum computing for finance: State-of-the-art and future prospects. IEEE Trans. Quant. Eng. 1, 1–24 (2020)CrossRef
Zurück zum Zitat Fuchs, C.A., Mermin, N.D., Schack, R.: An introduction to QBism with an application to the locality of quantum mechanics. Am. J. Phys. 82(8), 749–754 (2014)CrossRef Fuchs, C.A., Mermin, N.D., Schack, R.: An introduction to QBism with an application to the locality of quantum mechanics. Am. J. Phys. 82(8), 749–754 (2014)CrossRef
Zurück zum Zitat Haven, E., Khrennikov, A., Khrennikov, A.I.: Quantum Social Science. Cambridge University Press (2013)CrossRef Haven, E., Khrennikov, A., Khrennikov, A.I.: Quantum Social Science. Cambridge University Press (2013)CrossRef
Zurück zum Zitat Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81(2), 865 (2009)CrossRef Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81(2), 865 (2009)CrossRef
Zurück zum Zitat Khrennikov, A.: Quantum versus classical entanglement: eliminating the issue of quantum nonlocality. Found. Phys. 50(12), 1762–1780 (2020)CrossRef Khrennikov, A.: Quantum versus classical entanglement: eliminating the issue of quantum nonlocality. Found. Phys. 50(12), 1762–1780 (2020)CrossRef
Zurück zum Zitat Khrennikov, A.: Växjö Interpretation of Quantum Mechanics. Växjö University Publication (2002) Khrennikov, A.: Växjö Interpretation of Quantum Mechanics. Växjö University Publication (2002)
Zurück zum Zitat Khrennikova, P., Patra, S.: Asset trading under non-classical ambiguity and heterogeneous beliefs. Physica A 521, 562–577 (2019)CrossRef Khrennikova, P., Patra, S.: Asset trading under non-classical ambiguity and heterogeneous beliefs. Physica A 521, 562–577 (2019)CrossRef
Zurück zum Zitat Misra, B., Sudarshan, E.G.: The Zeno’s paradox in quantum theory. J. Math. Phys. 18(4), 756–763 (1977)CrossRef Misra, B., Sudarshan, E.G.: The Zeno’s paradox in quantum theory. J. Math. Phys. 18(4), 756–763 (1977)CrossRef
Zurück zum Zitat Nash, J.F.: The bargaining problem. Econometrica: J. Econ. Soc. 155–162 (1950) Nash, J.F.: The bargaining problem. Econometrica: J. Econ. Soc. 155–162 (1950)
Zurück zum Zitat Patra, S., Ghose, P.: Classical optical modelling of the ‘prisoner’s dilemma’ game. In: Sriboonchitta, S., Kreinovich, V., Yamaka, W. (eds.) Credible Asset Allocation, Optimal Transport Methods, and Related Topics. TES 2022a. Studies in Systems, Decision and Control, vol. 429. Springer, Cham (2022a) Patra, S., Ghose, P.: Classical optical modelling of the ‘prisoner’s dilemma’ game. In: Sriboonchitta, S., Kreinovich, V., Yamaka, W. (eds.) Credible Asset Allocation, Optimal Transport Methods, and Related Topics. TES 2022a. Studies in Systems, Decision and Control, vol. 429. Springer, Cham (2022a)
Zurück zum Zitat Patra, S., Ghose, P.: Classical optical modelling of social sciences in a Bohr-Kantian framework. In: Credible Asset Allocation, Optimal Transport Methods, and Related Topics, pp. 221–244. Springer International Publishing, Cham (2022b)CrossRef Patra, S., Ghose, P.: Classical optical modelling of social sciences in a Bohr-Kantian framework. In: Credible Asset Allocation, Optimal Transport Methods, and Related Topics, pp. 221–244. Springer International Publishing, Cham (2022b)CrossRef
Zurück zum Zitat Patra, S., Ghose, P.: Quantum-like modelling in game theory: Quo Vadis? A brief review. Asian J. Econ. Bank. 4(3), 49–66 (2020)CrossRef Patra, S., Ghose, P.: Quantum-like modelling in game theory: Quo Vadis? A brief review. Asian J. Econ. Bank. 4(3), 49–66 (2020)CrossRef
Zurück zum Zitat Patra, S.: A Quantum Framework for Economic Science: New Directions (No. 2019–20). Economics Discussion Papers (2019) Patra, S.: A Quantum Framework for Economic Science: New Directions (No. 2019–20). Economics Discussion Papers (2019)
Zurück zum Zitat Penrose, R.: The road to reality. Random House (2005) Penrose, R.: The road to reality. Random House (2005)
Zurück zum Zitat Rajagopal, A.K., Ghose, P.: Hilbert space theory of classical electrodynamics. Pramana 86, 1161–1172 (2016)CrossRef Rajagopal, A.K., Ghose, P.: Hilbert space theory of classical electrodynamics. Pramana 86, 1161–1172 (2016)CrossRef
Zurück zum Zitat Segal, U.: The Ellsberg paradox and risk aversion: An anticipated utility approach. Int. Econ. Rev. 175–202 (1987) Segal, U.: The Ellsberg paradox and risk aversion: An anticipated utility approach. Int. Econ. Rev. 175–202 (1987)
Zurück zum Zitat Thaler, R.H.: Behavioral economics: Past, present, and future. Am. Econ. Rev. 106(7), 1577–1600 (2016)CrossRef Thaler, R.H.: Behavioral economics: Past, present, and future. Am. Econ. Rev. 106(7), 1577–1600 (2016)CrossRef
Zurück zum Zitat Timpson, C.G.: Quantum Information Theory and the Foundations of Quantum Mechanics. OUP Oxford (2013) Timpson, C.G.: Quantum Information Theory and the Foundations of Quantum Mechanics. OUP Oxford (2013)
Zurück zum Zitat Von Neumann, J., Morgenstern, O.: Theory of games and economic behavior. In: Theory of Games and Economic Behavior. Princeton University Press (2007) Von Neumann, J., Morgenstern, O.: Theory of games and economic behavior. In: Theory of Games and Economic Behavior. Princeton University Press (2007)
Zurück zum Zitat Wigner, E.P.: The unreasonable effectiveness of mathematics in the natural sciences. Math. Sci. 291–306 (1990) Wigner, E.P.: The unreasonable effectiveness of mathematics in the natural sciences. Math. Sci. 291–306 (1990)
Metadaten
Titel
Hilbert Space Modelling with Applications in Classical Optics, Human Cognition, and Game Theory
verfasst von
Partha Ghose
Sudip Patra
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-38833-0_3

Premium Partner