Skip to main content
Erschienen in: Mechanics of Composite Materials 2/2023

21.04.2023

Multiphase Fea-Approach for Non-Linear Deformation Prediction and Fibre-Reinforced Plastics Failure

verfasst von: S. B. Sapozhnikov, K. A. Guseynov, M. V. Zhikharev

Erschienen in: Mechanics of Composite Materials | Ausgabe 2/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The study shows that the combination of several finite elements with different deformation models of continuum (elastic, elastic-plastic, isotropic and orthotropic) at common nodes makes it possible to predict complex nonlinear deformation of fibrous composites. There is considered only elastic deformation in the built-in libraries of anisotropic materials in well-known commercial FEA packages. Calculations of nonlinear mechanical behavior and failure under loading in the warp/weft and diagonal directions were performed on the example of fibreglass plastic STEF. Complex behavior of STEF is shown to be described by combining three phases with simple constitutive models: two brittle monotropic (imitate dry warp and weft fibers) and one isotropic elastic-plastic (imitate polymer). To determine the elasticity and fracture parameters of each model, it is proposed to apply experimental STEF stress-strain diagrams in the warp/weft and diagonal directions. The failure criteria for the above mentioned models are independent and are recorded in terms of strain. The strain mapping and damage development in STEF near the hole was studied by DIC and acoustic emission methods. ANSYS Workbench (Autodyn) software, critical distance theory, and failed finite element erosion technology were used to evaluate the fracture load of tensile specimens with a hole. The results of fracture loads and inelastic deformation fields calculations are in good agreement with the experimental data.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat P. K. Mallik, Fiber-Reinforced Composites: Materials, Manufacturing and Design, CRC Press (2008). P. K. Mallik, Fiber-Reinforced Composites: Materials, Manufacturing and Design, CRC Press (2008).
2.
Zurück zum Zitat I. M. Daniel, O. Ishai, Engineering Mechanics of Composite Materials, 2nd edition, Oxford University Press (2006). I. M. Daniel, O. Ishai, Engineering Mechanics of Composite Materials, 2nd edition, Oxford University Press (2006).
4.
Zurück zum Zitat G. Sun, L. Wang, D. Chen, and Q. Luo, “Tensile performance of basalt fiber composites with open circular holes and straight notches,” Int. J. Mech. Sci., 176, Paper No. 105517 (2020). G. Sun, L. Wang, D. Chen, and Q. Luo, “Tensile performance of basalt fiber composites with open circular holes and straight notches,” Int. J. Mech. Sci., 176, Paper No. 105517 (2020).
5.
Zurück zum Zitat P. P. Camanho, P. Maimí, and C. G. Dávila, “Prediction of size effects in notched laminates using continuum damage mechanics,” Compos. Sci. and Technol., 67, No. 13, 2715-2727 (2007).CrossRef P. P. Camanho, P. Maimí, and C. G. Dávila, “Prediction of size effects in notched laminates using continuum damage mechanics,” Compos. Sci. and Technol., 67, No. 13, 2715-2727 (2007).CrossRef
6.
Zurück zum Zitat A. C. Orifici, I. Herszberg, and R. S. Thomson, “Review of methodologies for composite material modelling incorporating failure,” Compos. Struct., 86, Nos. 1-3, 194-210 (2008).CrossRef A. C. Orifici, I. Herszberg, and R. S. Thomson, “Review of methodologies for composite material modelling incorporating failure,” Compos. Struct., 86, Nos. 1-3, 194-210 (2008).CrossRef
7.
Zurück zum Zitat K. Song, Y. Li, and C. A. Rose, “Continuum damage mechanics models for the analysis of progressive failure in open-hole tension laminates,” Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conf., Art. No. AIAA 2011-1861 (2011). K. Song, Y. Li, and C. A. Rose, “Continuum damage mechanics models for the analysis of progressive failure in open-hole tension laminates,” Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conf., Art. No. AIAA 2011-1861 (2011).
8.
Zurück zum Zitat J. Reiner, T. Feser, D. Schueler, M. Waimer, and R. Vaziri, “Comparison of two progressive damage models for studying the notched behavior of composite laminates under tension,” Compos. Struct., 207, 385-396 (2019).CrossRef J. Reiner, T. Feser, D. Schueler, M. Waimer, and R. Vaziri, “Comparison of two progressive damage models for studying the notched behavior of composite laminates under tension,” Compos. Struct., 207, 385-396 (2019).CrossRef
9.
Zurück zum Zitat M. Nikbakht, H. H. Toudeshky, and B. Mohammadi, “Experimental validation of an empirical nonlinear shear failure model for laminated composite materials,” J. Compos. Mater., 51, No. 6, 2331-2345 (2017).CrossRef M. Nikbakht, H. H. Toudeshky, and B. Mohammadi, “Experimental validation of an empirical nonlinear shear failure model for laminated composite materials,” J. Compos. Mater., 51, No. 6, 2331-2345 (2017).CrossRef
10.
Zurück zum Zitat G. Odegard, K. Searles, and M. Kumosa, “A continuum elastic-plastic model for woven-fabric/polymer-matrix composite materials under biaxial stresses,” Compos. Sci. and Technol., 61, No. 16, 2501-2510 (2001).CrossRef G. Odegard, K. Searles, and M. Kumosa, “A continuum elastic-plastic model for woven-fabric/polymer-matrix composite materials under biaxial stresses,” Compos. Sci. and Technol., 61, No. 16, 2501-2510 (2001).CrossRef
11.
Zurück zum Zitat S. B. Sapozhnikov and S. I. Cheremnykh, “The strength of fibre reinforced polymer under a complex loading,” J. Compos. Mater., 47, Nos. 20-21, 2525-2552 (2013).CrossRef S. B. Sapozhnikov and S. I. Cheremnykh, “The strength of fibre reinforced polymer under a complex loading,” J. Compos. Mater., 47, Nos. 20-21, 2525-2552 (2013).CrossRef
12.
Zurück zum Zitat Z. W. Xu, Y. H. Chen, W. J. Cantwell, and Z. W. Guan, “Multiscale modelling of scaling effects in the impact response of plain woven composites,” Compos.: Part B, 188, paper No. 107885 (2020). Z. W. Xu, Y. H. Chen, W. J. Cantwell, and Z. W. Guan, “Multiscale modelling of scaling effects in the impact response of plain woven composites,” Compos.: Part B, 188, paper No. 107885 (2020).
13.
Zurück zum Zitat S. V. Lomov, A. V. Gusakov, G. Huysmans, A. Prodromou, and I. Verpoest, “Textile geometry preprocessor for mesomechanical models of woven composites,” Compos. Sci. and Technol. 60, No. 11, 2083-2095 (2000).CrossRef S. V. Lomov, A. V. Gusakov, G. Huysmans, A. Prodromou, and I. Verpoest, “Textile geometry preprocessor for mesomechanical models of woven composites,” Compos. Sci. and Technol. 60, No. 11, 2083-2095 (2000).CrossRef
14.
Zurück zum Zitat H. Lin, X. S. Zeng, M. Sherburn, A. C. Long, and M. J. Clifford, “Automated geometric modelling of textile structures,” Textile Research J., 82, No. 16, 1689-1702 (2012).CrossRef H. Lin, X. S. Zeng, M. Sherburn, A. C. Long, and M. J. Clifford, “Automated geometric modelling of textile structures,” Textile Research J., 82, No. 16, 1689-1702 (2012).CrossRef
15.
Zurück zum Zitat S. D. Green, M. V. Matveev, A. C. Long, D. Ivanov, and S. R. Hallett, “Mechanical modelling of 3D woven composites considering realistic unit cell geometry,” Compos. Struct., 118, 284-293 (2014).CrossRef S. D. Green, M. V. Matveev, A. C. Long, D. Ivanov, and S. R. Hallett, “Mechanical modelling of 3D woven composites considering realistic unit cell geometry,” Compos. Struct., 118, 284-293 (2014).CrossRef
16.
Zurück zum Zitat L. F. Varandas, G. Catalanotti, A. R. Melro, and B. G. Falzon, “On the importance of nesting considerations for accurate computational damage modelling in 2D woven composite materials,” Computational Mater. Sci., 172, paper No. 109323 (2020). L. F. Varandas, G. Catalanotti, A. R. Melro, and B. G. Falzon, “On the importance of nesting considerations for accurate computational damage modelling in 2D woven composite materials,” Computational Mater. Sci., 172, paper No. 109323 (2020).
17.
Zurück zum Zitat E. V. Iarve, D. Mollenhauer, T. J. Whitney, and R. Kim, “Strength prediction in composites with stress concentrations: classical Weibull and critical failure volume methods with micromechanical considerations,” J. Mater. Sci., 41, No. 20, 6610-6621 (2006).CrossRef E. V. Iarve, D. Mollenhauer, T. J. Whitney, and R. Kim, “Strength prediction in composites with stress concentrations: classical Weibull and critical failure volume methods with micromechanical considerations,” J. Mater. Sci., 41, No. 20, 6610-6621 (2006).CrossRef
18.
Zurück zum Zitat J. Wang, P. J. Callus, and M. K. Bannister, “Experimental and numerical investigation of the tension and compression strength of unnotched and notched quasi-isotropic laminates,” Compos. Struct., 64, Nos. 3-4, 297-306 (2004).CrossRef J. Wang, P. J. Callus, and M. K. Bannister, “Experimental and numerical investigation of the tension and compression strength of unnotched and notched quasi-isotropic laminates,” Compos. Struct., 64, Nos. 3-4, 297-306 (2004).CrossRef
19.
Zurück zum Zitat A. N. Fedorenko, B. N. Fedulov, and E. V. Lomakin, “Failure analysis of laminated composites with shear nonlinearity and strain-rate response,” Procedia Structural Integrity, 18, 432-442 (2019).CrossRef A. N. Fedorenko, B. N. Fedulov, and E. V. Lomakin, “Failure analysis of laminated composites with shear nonlinearity and strain-rate response,” Procedia Structural Integrity, 18, 432-442 (2019).CrossRef
20.
Zurück zum Zitat H. Neuber, “Theory of stress concentration for shear-strained prismatical bodies with arbitrary nonlinear stress-strain law,” J. Appl. Mech., Transactions ASME, 28, No. (4), 544-550 (1960). H. Neuber, “Theory of stress concentration for shear-strained prismatical bodies with arbitrary nonlinear stress-strain law,” J. Appl. Mech., Transactions ASME, 28, No. (4), 544-550 (1960).
21.
Zurück zum Zitat J. M. Whitney and R. J. Nuismer, “Stress Fracture Criteria for Laminated Composites Containing Stress Concentrations,” J. Compos. Mater., 8, No. 3, 253-265 (1974).CrossRef J. M. Whitney and R. J. Nuismer, “Stress Fracture Criteria for Laminated Composites Containing Stress Concentrations,” J. Compos. Mater., 8, No. 3, 253-265 (1974).CrossRef
22.
Zurück zum Zitat G. H. Erçin, P. P. Camanho, J. Xavier, G. Catalanotti, S. Mahdi, and P. Linde, “Size effects on the tensile and compressive failure of notched composite laminates,” Compos. Struct., 96, 736-744 (2013).CrossRef G. H. Erçin, P. P. Camanho, J. Xavier, G. Catalanotti, S. Mahdi, and P. Linde, “Size effects on the tensile and compressive failure of notched composite laminates,” Compos. Struct., 96, 736-744 (2013).CrossRef
23.
Zurück zum Zitat L. Susmel and D. Taylor, “On the use of the Theory of Critical Distances to predict static failures in ductile metallic materials containing different geometrical features,” Eng. Fracture Mech., 75, No. 15, 4410-4421 (2008).CrossRef L. Susmel and D. Taylor, “On the use of the Theory of Critical Distances to predict static failures in ductile metallic materials containing different geometrical features,” Eng. Fracture Mech., 75, No. 15, 4410-4421 (2008).CrossRef
24.
Zurück zum Zitat S. B. Sapozhnikov, Defects and Strength of Reinforced Plastics [in Russian], Monograph, Chelyabinsk, ChSTU (1994). S. B. Sapozhnikov, Defects and Strength of Reinforced Plastics [in Russian], Monograph, Chelyabinsk, ChSTU (1994).
27.
Zurück zum Zitat C. Medina, C. Canales, C. Arango, and P. Flores, “The influence of carbon fabric weave on the in-plane shear mechanical performance of epoxy fiber-reinforced laminates,” J. Compos. Mater., 48, No. 23, 2871-2878 (2014).CrossRef C. Medina, C. Canales, C. Arango, and P. Flores, “The influence of carbon fabric weave on the in-plane shear mechanical performance of epoxy fiber-reinforced laminates,” J. Compos. Mater., 48, No. 23, 2871-2878 (2014).CrossRef
28.
Zurück zum Zitat W. Tan and B. G. Falzon, “Modelling the nonlinear behavior and fracture process of AS4/PEKK thermoplastic composite under shear loading,” Compos. Sci. and Technol., 126 (February), 60-77 (2016).CrossRef W. Tan and B. G. Falzon, “Modelling the nonlinear behavior and fracture process of AS4/PEKK thermoplastic composite under shear loading,” Compos. Sci. and Technol., 126 (February), 60-77 (2016).CrossRef
Metadaten
Titel
Multiphase Fea-Approach for Non-Linear Deformation Prediction and Fibre-Reinforced Plastics Failure
verfasst von
S. B. Sapozhnikov
K. A. Guseynov
M. V. Zhikharev
Publikationsdatum
21.04.2023
Verlag
Springer US
Erschienen in
Mechanics of Composite Materials / Ausgabe 2/2023
Print ISSN: 0191-5665
Elektronische ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-023-10096-9

Weitere Artikel der Ausgabe 2/2023

Mechanics of Composite Materials 2/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.