Skip to main content

2024 | OriginalPaper | Buchkapitel

Spin-State Controlled Atomically Precise Catalysts for Efficient Oxygen Evolution Reaction Design and Mechanism

verfasst von : Jinyang Li, Kun Wang, Chen Zheng, Jiayang Li

Erschienen in: Atomically Precise Electrocatalysts for Electrochemical Energy Applications

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Since the oxygen is in a triplet state and the oxygen evolution reaction (OER) mechanism is related to the electron spin state, it is possible to improve the catalytic ability by regulating the spin state of the catalyst. From this point of view, we first introduce the unique electronic structure of oxygen, oxygen evolution reaction products, and then detail the mechanism of electron spin correlation in the entire oxygen evolution reaction, and how the catalyst affects this electron spin state, thereby affecting the catalytic reaction rate. Then, we introduced the research on the regulation of the electron spin states of the catalyst. Since the research dimension of the electron spin states is mostly concentrated at the atomic level, the unique atomic structure of the single-atom catalyst is more conducive to the first research. Therefore, we introduced the research on the spin state regulation of the single-atom catalyst. The spin state control at the atomic level of catalysts such as spinel is further introduced. Finally, the research on spin state regulation of oxygen evolution catalysts was summarized and prospected. In the future, the mechanism of spin state regulation of catalysts at the atomic level should be studied more clearly by developing in situ characterization techniques.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat An L, Wei C, Lu M et al (2021) Recent development of oxygen evolution electrocatalysts in acidic environment. Adv Mater 33(20) An L, Wei C, Lu M et al (2021) Recent development of oxygen evolution electrocatalysts in acidic environment. Adv Mater 33(20)
Zurück zum Zitat Batchelor T, Pedersen JK, Winther SH et al (2019) High-entropy alloys as a discovery platform for electrocatalysis. Joule 3(3):834–845CrossRef Batchelor T, Pedersen JK, Winther SH et al (2019) High-entropy alloys as a discovery platform for electrocatalysis. Joule 3(3):834–845CrossRef
Zurück zum Zitat Chen X, Aschaffenburg DJ, Cuk T (2019) Selecting between two transition states by which water oxidation intermediates decay on an oxide surface. Nat Catal 2(9):820–827CrossRef Chen X, Aschaffenburg DJ, Cuk T (2019) Selecting between two transition states by which water oxidation intermediates decay on an oxide surface. Nat Catal 2(9):820–827CrossRef
Zurück zum Zitat Chen G, Sun Y, Chen RR et al (2021a) A discussion on the possible involvement of singlet oxygen in oxygen electrocatalysis. J Phys: Energy 3(3):031004 Chen G, Sun Y, Chen RR et al (2021a) A discussion on the possible involvement of singlet oxygen in oxygen electrocatalysis. J Phys: Energy 3(3):031004
Zurück zum Zitat Chen Z, Ju M, Sun M et al (2021b) TM LDH Meets birnessite: A 2D–2D hybrid catalyst with long-term stability for water oxidation at industrial operating conditions. Angew Chem Int Ed 60(17):9699–9705CrossRef Chen Z, Ju M, Sun M et al (2021b) TM LDH Meets birnessite: A 2D–2D hybrid catalyst with long-term stability for water oxidation at industrial operating conditions. Angew Chem Int Ed 60(17):9699–9705CrossRef
Zurück zum Zitat Garcés-Pineda FA, Blasco-Ahicart M, Nieto-Castro D et al (2019) Direct magnetic enhancement of electrocatalytic water oxidation in alkaline media. Nat Energy 4(6):519–525CrossRef Garcés-Pineda FA, Blasco-Ahicart M, Nieto-Castro D et al (2019) Direct magnetic enhancement of electrocatalytic water oxidation in alkaline media. Nat Energy 4(6):519–525CrossRef
Zurück zum Zitat Ge J, Chen RR, Ren X et al (2021) Ferromagnetic-antiferromagnetic coupling core-shell nanoparticles with spin conservation for water oxidation. Adv Mater 33(42):2101091CrossRef Ge J, Chen RR, Ren X et al (2021) Ferromagnetic-antiferromagnetic coupling core-shell nanoparticles with spin conservation for water oxidation. Adv Mater 33(42):2101091CrossRef
Zurück zum Zitat Gong X, Jiang Z, Zeng W et al (2022) Alternating magnetic field induced magnetic heating in ferromagnetic cobalt single-atom catalysts for efficient oxygen evolution reaction. Nano Lett 22(23):9411–9417CrossRef Gong X, Jiang Z, Zeng W et al (2022) Alternating magnetic field induced magnetic heating in ferromagnetic cobalt single-atom catalysts for efficient oxygen evolution reaction. Nano Lett 22(23):9411–9417CrossRef
Zurück zum Zitat Gracia J (2017) Spin dependent interactions catalyse the oxygen electrochemistry. Phys Chem Chem Phys 19(31):20451–20456CrossRef Gracia J (2017) Spin dependent interactions catalyse the oxygen electrochemistry. Phys Chem Chem Phys 19(31):20451–20456CrossRef
Zurück zum Zitat Gracia J, Sharpe R, Munarriz J (2018) Principles determining the activity of magnetic oxides for electron transfer reactions. J Catal 361:331–338CrossRef Gracia J, Sharpe R, Munarriz J (2018) Principles determining the activity of magnetic oxides for electron transfer reactions. J Catal 361:331–338CrossRef
Zurück zum Zitat Hong WT, Risch M, Stoerzinger KA, Grimaud A, Suntivich J, Shao-Horn Y (2015) Energy Environ Sci 8:1404–1427 Hong WT, Risch M, Stoerzinger KA, Grimaud A, Suntivich J, Shao-Horn Y (2015) Energy Environ Sci 8:1404–1427
Zurück zum Zitat Jin H, Liu X, Chen S et al (2019) Heteroatom-doped transition metal electrocatalysts for hydrogen evolution reaction. ACS Energy Lett 4(4):805–810CrossRef Jin H, Liu X, Chen S et al (2019) Heteroatom-doped transition metal electrocatalysts for hydrogen evolution reaction. ACS Energy Lett 4(4):805–810CrossRef
Zurück zum Zitat Koper MT (2013) Theory of multiple proton–electron transfer reactions and its implications for electrocatalysis. Chem Sci 4(7):2710–2723CrossRef Koper MT (2013) Theory of multiple proton–electron transfer reactions and its implications for electrocatalysis. Chem Sci 4(7):2710–2723CrossRef
Zurück zum Zitat Kwak D-H, Han S-B, Lee Y-W et al (2017) Fe/N/S-doped mesoporous carbon nanostructures as electrocatalysts for oxygen reduction reaction in acid medium. Appl Catal B 203:889–898CrossRef Kwak D-H, Han S-B, Lee Y-W et al (2017) Fe/N/S-doped mesoporous carbon nanostructures as electrocatalysts for oxygen reduction reaction in acid medium. Appl Catal B 203:889–898CrossRef
Zurück zum Zitat Lei K, Yu Xia B (2022) Electrocatalytic CO2 reduction: from discrete molecular catalysts to their integrated catalytic materials. Chem–A Eur J 28(30):e202200141 Lei K, Yu Xia B (2022) Electrocatalytic CO2 reduction: from discrete molecular catalysts to their integrated catalytic materials. Chem–A Eur J 28(30):e202200141
Zurück zum Zitat Li Y, Wu ZS, Lu P et al (2020) High-valence nickel single-atom catalysts coordinated to oxygen sites for extraordinarily activating oxygen evolution reaction. Adv Sci 7(5):1903089CrossRef Li Y, Wu ZS, Lu P et al (2020) High-valence nickel single-atom catalysts coordinated to oxygen sites for extraordinarily activating oxygen evolution reaction. Adv Sci 7(5):1903089CrossRef
Zurück zum Zitat Li X, Cheng Z, Wang X (2021a) Understanding the mechanism of the oxygen evolution reaction with consideration of spin. Electrochem Energy Rev 4(1):136–145CrossRef Li X, Cheng Z, Wang X (2021a) Understanding the mechanism of the oxygen evolution reaction with consideration of spin. Electrochem Energy Rev 4(1):136–145CrossRef
Zurück zum Zitat Li Z, Wang Z, Xi S et al (2021b) Tuning the spin density of cobalt single-atom catalysts for efficient oxygen evolution. ACS Nano 15(4):7105–7113CrossRef Li Z, Wang Z, Xi S et al (2021b) Tuning the spin density of cobalt single-atom catalysts for efficient oxygen evolution. ACS Nano 15(4):7105–7113CrossRef
Zurück zum Zitat Li H, Wang J, Qi R et al (2021c) Enhanced Fe 3d delocalization and moderate spin polarization in FeNi atomic pairs for bifunctional ORR and OER electrocatalysis. Appl Catal B 285:119778CrossRef Li H, Wang J, Qi R et al (2021c) Enhanced Fe 3d delocalization and moderate spin polarization in FeNi atomic pairs for bifunctional ORR and OER electrocatalysis. Appl Catal B 285:119778CrossRef
Zurück zum Zitat Lin L, Xin R, Yuan M et al (2023) Revealing spin magnetic effect of iron-group layered double hydroxides with enhanced oxygen catalysis. ACS Catal 13:1431–1440CrossRef Lin L, Xin R, Yuan M et al (2023) Revealing spin magnetic effect of iron-group layered double hydroxides with enhanced oxygen catalysis. ACS Catal 13:1431–1440CrossRef
Zurück zum Zitat Liu Y, Xiao C, Huang P et al (2018) Regulating the charge and spin ordering of two-dimensional ultrathin solids for electrocatalytic water splitting. Chem 4(6):1263–1283CrossRef Liu Y, Xiao C, Huang P et al (2018) Regulating the charge and spin ordering of two-dimensional ultrathin solids for electrocatalytic water splitting. Chem 4(6):1263–1283CrossRef
Zurück zum Zitat Liu S, Gao R-T, Sun M et al (2021) In situ construction of hybrid Co(OH)2 nanowires for promoting long-term water splitting. Appl Catal B 292:120063CrossRef Liu S, Gao R-T, Sun M et al (2021) In situ construction of hybrid Co(OH)2 nanowires for promoting long-term water splitting. Appl Catal B 292:120063CrossRef
Zurück zum Zitat Lyu X, Zhang Y, Du Z et al (2022) Magnetic field manipulation of tetrahedral units in spinel oxides for boosting water oxidation. Small 18(42):2204143CrossRef Lyu X, Zhang Y, Du Z et al (2022) Magnetic field manipulation of tetrahedral units in spinel oxides for boosting water oxidation. Small 18(42):2204143CrossRef
Zurück zum Zitat Man IC, Su HY, Calle-Vallejo F et al (2011) Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3(7):1159–1165CrossRef Man IC, Su HY, Calle-Vallejo F et al (2011) Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3(7):1159–1165CrossRef
Zurück zum Zitat Margadonna S, Karotsis G (2006) Cooperative Jahn-Teller distortion, phase transitions, and weak ferromagnetism in the KCrF3 perovskite. J Am Chem Soc 128(51):16436–16437CrossRef Margadonna S, Karotsis G (2006) Cooperative Jahn-Teller distortion, phase transitions, and weak ferromagnetism in the KCrF3 perovskite. J Am Chem Soc 128(51):16436–16437CrossRef
Zurück zum Zitat Mueller DN, Machala ML, Bluhm H et al (2015) Redox activity of surface oxygen anions in oxygen-deficient perovskite oxides during electrochemical reactions. Nat Commun 6(1):1–8CrossRef Mueller DN, Machala ML, Bluhm H et al (2015) Redox activity of surface oxygen anions in oxygen-deficient perovskite oxides during electrochemical reactions. Nat Commun 6(1):1–8CrossRef
Zurück zum Zitat Newman D J, Ng B (2000) Crystal field handbook. Cambridge University Press, Cambridge Newman D J, Ng B (2000) Crystal field handbook. Cambridge University Press, Cambridge
Zurück zum Zitat Ren X, Wu T, Sun Y et al (2021) Spin-polarized oxygen evolution reaction under magnetic field. Nat Commun 12(1):1–12CrossRef Ren X, Wu T, Sun Y et al (2021) Spin-polarized oxygen evolution reaction under magnetic field. Nat Commun 12(1):1–12CrossRef
Zurück zum Zitat Shen G, Zhang R, Pan L et al (2020) Regulating the spin state of feIII by atomically anchoring on ultrathin titanium dioxide for efficient oxygen evolution electrocatalysis. Angew Chem Int Ed 59(6):2313–2317CrossRef Shen G, Zhang R, Pan L et al (2020) Regulating the spin state of feIII by atomically anchoring on ultrathin titanium dioxide for efficient oxygen evolution electrocatalysis. Angew Chem Int Ed 59(6):2313–2317CrossRef
Zurück zum Zitat Sun Y, Wang J, Liu Q et al (2019) Itinerant ferromagnetic half metallic cobalt–iron couples: promising bifunctional electrocatalysts for ORR and OER. J Mater Chem A 7(47):27175–27185CrossRef Sun Y, Wang J, Liu Q et al (2019) Itinerant ferromagnetic half metallic cobalt–iron couples: promising bifunctional electrocatalysts for ORR and OER. J Mater Chem A 7(47):27175–27185CrossRef
Zurück zum Zitat Sun Y, Sun S, Yang H et al (2020) Spin-related electron transfer and orbital interactions in oxygen electrocatalysis. Adv Mater 32(39):2003297CrossRef Sun Y, Sun S, Yang H et al (2020) Spin-related electron transfer and orbital interactions in oxygen electrocatalysis. Adv Mater 32(39):2003297CrossRef
Zurück zum Zitat Sun Z, Lin L, He J et al (2022) Regulating the spin state of feiii enhances the magnetic effect of the molecular catalysis mechanism. J Am Chem Soc Sun Z, Lin L, He J et al (2022) Regulating the spin state of feiii enhances the magnetic effect of the molecular catalysis mechanism. J Am Chem Soc
Zurück zum Zitat Sun T, Tang Z, Zang W et al (2023) Ferromagnetic single-atom spin catalyst for boosting water splitting. Nat Nanotechnol 1–9 Sun T, Tang Z, Zang W et al (2023) Ferromagnetic single-atom spin catalyst for boosting water splitting. Nat Nanotechnol 1–9
Zurück zum Zitat Wan W, Zhao Y, Wei S et al (2021) Mechanistic insight into the active centers of single/dual-atom Ni/Fe-based oxygen electrocatalysts. Nat Commun 12(1):5589CrossRef Wan W, Zhao Y, Wei S et al (2021) Mechanistic insight into the active centers of single/dual-atom Ni/Fe-based oxygen electrocatalysts. Nat Commun 12(1):5589CrossRef
Zurück zum Zitat Wang X, Yu L, Guan BY et al (2018) Metal-organic framework hybrid-assisted formation of Co3O4/Co–Fe oxide double-shelled nanoboxes for enhanced oxygen evolution. Adv Mater 30(29):1801211CrossRef Wang X, Yu L, Guan BY et al (2018) Metal-organic framework hybrid-assisted formation of Co3O4/Co–Fe oxide double-shelled nanoboxes for enhanced oxygen evolution. Adv Mater 30(29):1801211CrossRef
Zurück zum Zitat Wang X, Xi S, Huang P et al (2022) Pivotal role of reversible NiO6 geometric conversion in oxygen evolution. Nature 1–7 Wang X, Xi S, Huang P et al (2022) Pivotal role of reversible NiO6 geometric conversion in oxygen evolution. Nature 1–7
Zurück zum Zitat Wu T, Ren X, Sun Y et al (2021) Spin pinning effect to reconstructed oxyhydroxide layer on ferromagnetic oxides for enhanced water oxidation. Nat Commun 12(1):1–11 Wu T, Ren X, Sun Y et al (2021) Spin pinning effect to reconstructed oxyhydroxide layer on ferromagnetic oxides for enhanced water oxidation. Nat Commun 12(1):1–11
Zurück zum Zitat Xiong Z, Hu C, Luo X et al (2021) Field-free improvement of oxygen evolution reaction in magnetic two-dimensional heterostructures. Nano Lett 21(24):10486–10493CrossRef Xiong Z, Hu C, Luo X et al (2021) Field-free improvement of oxygen evolution reaction in magnetic two-dimensional heterostructures. Nano Lett 21(24):10486–10493CrossRef
Zurück zum Zitat Yoo JS, Rong X, Liu Y et al (2018) Role of lattice oxygen participation in understanding trends in the oxygen evolution reaction on perovskites. ACS Catal 8(5):4628–4636CrossRef Yoo JS, Rong X, Liu Y et al (2018) Role of lattice oxygen participation in understanding trends in the oxygen evolution reaction on perovskites. ACS Catal 8(5):4628–4636CrossRef
Zurück zum Zitat Yun TG, Heo Y, Bin Bae H et al (2021) Elucidating intrinsic contribution of d-orbital states to oxygen evolution electrocatalysis in oxides. Nat Commun 12(1):824CrossRef Yun TG, Heo Y, Bin Bae H et al (2021) Elucidating intrinsic contribution of d-orbital states to oxygen evolution electrocatalysis in oxides. Nat Commun 12(1):824CrossRef
Zurück zum Zitat Zhang N, Chai Y (2021) Lattice oxygen redox chemistry in solid-state electrocatalysts for water oxidation. Energy Environ Sci 14(9):4647–4671CrossRef Zhang N, Chai Y (2021) Lattice oxygen redox chemistry in solid-state electrocatalysts for water oxidation. Energy Environ Sci 14(9):4647–4671CrossRef
Zurück zum Zitat Zhang Y, Guo P, Niu S et al (2022) Magnetic field enhanced electrocatalytic oxygen evolution of NiFe–LDH/Co3O4 p–n heterojunction supported on nickel foam. Small Methods 6(6):2200084CrossRef Zhang Y, Guo P, Niu S et al (2022) Magnetic field enhanced electrocatalytic oxygen evolution of NiFe–LDH/Co3O4 p–n heterojunction supported on nickel foam. Small Methods 6(6):2200084CrossRef
Zurück zum Zitat Zhong D, Seyler KL, Linpeng X et al (2020) Layer-resolved magnetic proximity effect in van der Waals heterostructures. Nat Nanotechnol 15(3):187–191CrossRef Zhong D, Seyler KL, Linpeng X et al (2020) Layer-resolved magnetic proximity effect in van der Waals heterostructures. Nat Nanotechnol 15(3):187–191CrossRef
Zurück zum Zitat Zhou G, Wang P, Li H et al (2021a) Spin-state reconfiguration induced by alternating magnetic field for efficient oxygen evolution reaction. Nat Commun 12(1):4827CrossRef Zhou G, Wang P, Li H et al (2021a) Spin-state reconfiguration induced by alternating magnetic field for efficient oxygen evolution reaction. Nat Commun 12(1):4827CrossRef
Zurück zum Zitat Zhou G, Wang P, Li H et al (2021b) Spin-sate reconfiguration induced by alternating magnetic field for efficient oxygen evolution reaction. Nat Commun 12(1):1–9 Zhou G, Wang P, Li H et al (2021b) Spin-sate reconfiguration induced by alternating magnetic field for efficient oxygen evolution reaction. Nat Commun 12(1):1–9
Zurück zum Zitat Zhu W, Chen W, Yu H et al (2020) NiCo/NiCo–OH and NiFe/NiFe–OH core shell nanostructures for water splitting electrocatalysis at large currents. Appl Catal B 278:119326CrossRef Zhu W, Chen W, Yu H et al (2020) NiCo/NiCo–OH and NiFe/NiFe–OH core shell nanostructures for water splitting electrocatalysis at large currents. Appl Catal B 278:119326CrossRef
Metadaten
Titel
Spin-State Controlled Atomically Precise Catalysts for Efficient Oxygen Evolution Reaction Design and Mechanism
verfasst von
Jinyang Li
Kun Wang
Chen Zheng
Jiayang Li
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-54622-8_13