Skip to main content

2024 | OriginalPaper | Buchkapitel

Abstract: Gradient-based Geometry Learning for Fan-beam CT Reconstruction

verfasst von : Mareike Thies, Fabian Wagner, Noah Maul, Lukas Folle, Manuela Meier, Maximilian Rohleder, Linda-Sophie Schneider, Laura Pfaff, Mingxuan Gu, Jonas Utz, Felix Denzinger, Michael Manhart, Andreas Maier

Erschienen in: Bildverarbeitung für die Medizin 2024

Verlag: Springer Fachmedien Wiesbaden

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Incorporating computed tomography (CT) reconstruction operators into differentiable pipelines has proven beneficial in many applications. Such approaches usually focus on the projection data and keep the acquisition geometry fixed. However, precise knowledge of the acquisition geometry is essential for high quality reconstruction results. Here, the differentiable formulation of fan-beam CT reconstruction is extended to the acquisition geometry. The CT reconstruction operation is analytically derived with respect to the acquisition geometry. This allows to propagate gradient information from a loss function on the reconstructed image into the geometry parameters. As a proof-ofconcept experiment, this idea is applied to rigid motion compensation. The cost function is parameterized by a trained neural network which regresses an image quality metric from the motion-affected reconstruction alone. Since this regressed quality index and the geometry parameters are connected in a differentiable manner, optimization can be performed using standard gradient-based optimization procedures. Oppositely, all previous approaches rely on gradient-free optimization in this context. The proposed motion compensation algorithm improves the structural similarity index measure (SSIM) from 0.848 for the initial motion-affected reconstruction to 0.946 after compensation. It also generalizes to real fan-beam sinograms which are rebinned from a helical trajectory where the SSIM increases from 0.639 to 0.742. Furthermore,we can showthat the number of target function evaluations is decreased by several orders of magnitude compared to gradientfree optimization. Using the proposed method, we are the first to optimize an autofocusinspired algorithm based on analytical gradients. Next to motion compensation, we see further use cases of our differentiable method for scanner calibration or hybrid techniques employing deep models. The GPU-accelerated source code for geometrydifferentiable CT backprojection in fan-beam and cone-beam geometries is publicly available at https://github.com/mareikethies/geometry_gradients_CT [1].

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Metadaten
Titel
Abstract: Gradient-based Geometry Learning for Fan-beam CT Reconstruction
verfasst von
Mareike Thies
Fabian Wagner
Noah Maul
Lukas Folle
Manuela Meier
Maximilian Rohleder
Linda-Sophie Schneider
Laura Pfaff
Mingxuan Gu
Jonas Utz
Felix Denzinger
Michael Manhart
Andreas Maier
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-658-44037-4_58

Premium Partner