Skip to main content
Erschienen in:
Buchtitelbild

2015 | OriginalPaper | Buchkapitel

1. Introduction

verfasst von : Khadige Abboud, Weihua Zhuang

Erschienen in: Mobility Modeling for Vehicular Communication Networks

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Newly manufactured vehicles are no longer the simple mechanical devices that we once knew. Each vehicle is a smart body of various sensors that can measure different attributes. Recently, efforts have been made to deploy communication capabilities in vehicles and the transport infrastructure, leading to a potential of vehicular ad hoc networks (VANETs) [1–3]. In 1999, the United States Federal Communications Commission (FCC) allocated 75 MHz of radio spectrum in the 5.9 GHz band to be used for Dedicated Short Range Communication (DSRC) by intelligent transportation systems (ITS). The DSRC spectrum has seven 10MHz channels, one control channel (CCH) and six service channels (SCHs). In 2008, the European Telecommunications Standards Institute (ETSI) allocated 30 MHz of spectrum in the 5.9 GHz band for ITS. In 2014, the United States (U.S.) National Highway Traffic Safety Administration (NHTSA) announced that it had been working with the U.S. department of transportation on regulations that would eventually mandate vehicular communication capabilities in new light vehicles by 2017 [4]. An envisioned VANET will consist of (1) vehicles with on-board sensing and transmitting units which form the network nodes; (2) stationary road side units (RSUs) deployed on the sides of roads and connected to the Internet; and (3) a set of wireless channels from the DSRC spectrum. An illustration of a VANET infrastructure is shown in Fig. 1.1.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
V2I communications refer to the bidirectional communications between an RSU and a vehicle.
 
2
The term traffic refers to vehicle traffic in this brief.
 
3
The set of nodes between two-hop vehicles is referred to as vehicle’s two-hop neighborhood, i.e., nodes in two-hop neighborhood of a reference vehicle are at most two-hop away from it, which includes its VNs.
 
Literatur
1.
Zurück zum Zitat N. Lu, N. Cheng, N. Zhang, X. Shen, and J. W. Mark, “Connected vehicles: Solutions and challenges,” IEEE J. Internet of Things, vol. 1, no. 4, pp. 289–299, 2014.CrossRef N. Lu, N. Cheng, N. Zhang, X. Shen, and J. W. Mark, “Connected vehicles: Solutions and challenges,” IEEE J. Internet of Things, vol. 1, no. 4, pp. 289–299, 2014.CrossRef
2.
Zurück zum Zitat H. A. Omar, N. Lu, and W. Zhuang, “Wireless access technologies for vehicular network safety applications,” IEEE Network, to appear. H. A. Omar, N. Lu, and W. Zhuang, “Wireless access technologies for vehicular network safety applications,” IEEE Network, to appear.
3.
Zurück zum Zitat H. T. Cheng, H. Shan, and W. Zhuang, “Infotainment and road safety service support in vehicular networking: From a communication perspective,” Mechanical Systems and Signal Processing, vol. 25, no. 6, pp. 2020–2038, 2011.CrossRef H. T. Cheng, H. Shan, and W. Zhuang, “Infotainment and road safety service support in vehicular networking: From a communication perspective,” Mechanical Systems and Signal Processing, vol. 25, no. 6, pp. 2020–2038, 2011.CrossRef
4.
Zurück zum Zitat J. Harding, G. Powell et al., “Vehicle-to-vehicle communications: Readiness of V2V technology for application,” U.S. Department of Transportation, Tech. Rep. DOT HS 812 014, 2014. J. Harding, G. Powell et al., “Vehicle-to-vehicle communications: Readiness of V2V technology for application,” U.S. Department of Transportation, Tech. Rep. DOT HS 812 014, 2014.
5.
Zurück zum Zitat “Vehicle safety communications project: task 3 final report: identify intelligent vehicle safety applications enabled by DSRC,” CAMP Vehicle Safety Communications Consortium, National Highway Traffic Safety Administration (NHSTA), U.S. Department of Transportation, Tech. Rep. DOT HS 809 859, 2005. “Vehicle safety communications project: task 3 final report: identify intelligent vehicle safety applications enabled by DSRC,” CAMP Vehicle Safety Communications Consortium, National Highway Traffic Safety Administration (NHSTA), U.S. Department of Transportation, Tech. Rep. DOT HS 809 859, 2005.
6.
Zurück zum Zitat F. Bai and B. Krishnamachari, “Spatio-temporal variations of vehicle traffic in VANETs: facts and implications,” in ACM Proc. Int. workshop on Vehicular InterNetworking, 2009, pp. 43–52. F. Bai and B. Krishnamachari, “Spatio-temporal variations of vehicle traffic in VANETs: facts and implications,” in ACM Proc. Int. workshop on Vehicular InterNetworking, 2009, pp. 43–52.
7.
Zurück zum Zitat A. May, Traffic Flow Fundamentals. Prentice Hall, 1990. A. May, Traffic Flow Fundamentals. Prentice Hall, 1990.
8.
Zurück zum Zitat M. Krbalek and K. Kittanova, “Theoretical predictions for vehicular headways and their clusters,” Physics: Data Analysis, Statistics and Probability (arXiv), 2012. M. Krbalek and K. Kittanova, “Theoretical predictions for vehicular headways and their clusters,” Physics: Data Analysis, Statistics and Probability (arXiv), 2012.
9.
Zurück zum Zitat L. Li, W. Fa, J. Rui, H. Jian-Ming, and J. Yan, “A new car-following model yielding log-normal type headways distributions,” Chinese Physics B, vol. 19, no. 2, 2010. L. Li, W. Fa, J. Rui, H. Jian-Ming, and J. Yan, “A new car-following model yielding log-normal type headways distributions,” Chinese Physics B, vol. 19, no. 2, 2010.
10.
Zurück zum Zitat S. Hoogendoorn and P. Bovy, “State-of-the-art of vehicular traffic flow modelling,” Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, vol. 215, no. 4, pp. 283–303, 2001. S. Hoogendoorn and P. Bovy, “State-of-the-art of vehicular traffic flow modelling,” Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, vol. 215, no. 4, pp. 283–303, 2001.
11.
Zurück zum Zitat G. Yan and S. Olariu, “A probabilistic analysis of link duration in vehicular ad hoc networks,” IEEE Trans. Intelligent Transportation Systems, vol. 12, no. 4, pp. 1227–1236, 2011.CrossRef G. Yan and S. Olariu, “A probabilistic analysis of link duration in vehicular ad hoc networks,” IEEE Trans. Intelligent Transportation Systems, vol. 12, no. 4, pp. 1227–1236, 2011.CrossRef
12.
Zurück zum Zitat R. Luttinen, “Statistical properties of vehicle time headways,” Transportation Research Record, no. 1365, 1992. R. Luttinen, “Statistical properties of vehicle time headways,” Transportation Research Record, no. 1365, 1992.
13.
Zurück zum Zitat K. Nagel and M. Schreckenberg, “A cellular automaton model for freeway traffic,” Journal de Physique I, vol. 2, no. 12, pp. 2221–2229, 1992.CrossRef K. Nagel and M. Schreckenberg, “A cellular automaton model for freeway traffic,” Journal de Physique I, vol. 2, no. 12, pp. 2221–2229, 1992.CrossRef
14.
Zurück zum Zitat H. Lenz, C. Wagner, and R. Sollacher, “Multi-anticipative car-following model,” European Physical Journal B-Condensed Matter and Complex Systems, vol. 7, no. 2, pp. 331–335, 1999.CrossRef H. Lenz, C. Wagner, and R. Sollacher, “Multi-anticipative car-following model,” European Physical Journal B-Condensed Matter and Complex Systems, vol. 7, no. 2, pp. 331–335, 1999.CrossRef
15.
Zurück zum Zitat PTV, “VISSIM 5.40 user manual,” Karlsruhe, Germany, 2012. PTV, “VISSIM 5.40 user manual,” Karlsruhe, Germany, 2012.
16.
Zurück zum Zitat M. Fellendorf and P. Vortisch, “Microscopic traffic flow simulator VISSIM,” Fundamentals of Traffic Simulation, pp. 63–93, 2010. M. Fellendorf and P. Vortisch, “Microscopic traffic flow simulator VISSIM,” Fundamentals of Traffic Simulation, pp. 63–93, 2010.
17.
Zurück zum Zitat K. A. Hafeez, L. Zhao, B. Ma, and J. W. Mark, “Performance analysis and enhancement of the DSRC for VANET’s safety applications,” IEEE Trans. Vehicular Technology, vol. 62, no. 7, pp. 3069–3083, 2013.CrossRef K. A. Hafeez, L. Zhao, B. Ma, and J. W. Mark, “Performance analysis and enhancement of the DSRC for VANET’s safety applications,” IEEE Trans. Vehicular Technology, vol. 62, no. 7, pp. 3069–3083, 2013.CrossRef
18.
Zurück zum Zitat T. H. Luan, X. Ling, and X. Shen, “MAC in motion: impact of mobility on the MAC of drive-thru internet,” IEEE Trans. Mobile Computing, vol. 11, no. 2, pp. 305–319, 2012.CrossRef T. H. Luan, X. Ling, and X. Shen, “MAC in motion: impact of mobility on the MAC of drive-thru internet,” IEEE Trans. Mobile Computing, vol. 11, no. 2, pp. 305–319, 2012.CrossRef
19.
Zurück zum Zitat Y. Li, D. Jin, Z. Wang, P. Hui, L. Zeng, and S. Chen, “A markov jump process model for urban vehicular mobility: modeling and applications,” IEEE Trans. Mobile Computing, vol. 13, no. 9, pp. 1911–1926, 2014.CrossRef Y. Li, D. Jin, Z. Wang, P. Hui, L. Zeng, and S. Chen, “A markov jump process model for urban vehicular mobility: modeling and applications,” IEEE Trans. Mobile Computing, vol. 13, no. 9, pp. 1911–1926, 2014.CrossRef
20.
Zurück zum Zitat N. Lu, T. H. Luan, M. Wang, X. Shen, and F. Bai, “Bounds of asymptotic performance limits of social-proximity vehicular networks,” IEEE/ACM Trans. Networking, vol. 22, no. 3, pp. 812–825, 2014.CrossRef N. Lu, T. H. Luan, M. Wang, X. Shen, and F. Bai, “Bounds of asymptotic performance limits of social-proximity vehicular networks,” IEEE/ACM Trans. Networking, vol. 22, no. 3, pp. 812–825, 2014.CrossRef
21.
Zurück zum Zitat K. A. Hafeez, L. Zhao, Z. Liao, and B. N.-W. Ma, “Impact of mobility on VANETs’ safety applications,” in Proc. IEEE Globecom, 2010, pp. 1–5. K. A. Hafeez, L. Zhao, Z. Liao, and B. N.-W. Ma, “Impact of mobility on VANETs’ safety applications,” in Proc. IEEE Globecom, 2010, pp. 1–5.
22.
Zurück zum Zitat K. Abboud and W. Zhuang, “Impact of node clustering on routing overhead in wireless networks,” in Proc. IEEE Globecom, 2011, pp. 1–5. K. Abboud and W. Zhuang, “Impact of node clustering on routing overhead in wireless networks,” in Proc. IEEE Globecom, 2011, pp. 1–5.
23.
Zurück zum Zitat N. Wisitpongphan, F. Bai, P. Mudalige, V. Sadekar, and O. Tonguz, “Routing in sparse vehicular ad hoc wireless networks,” IEEE J. Selected Areas in Communications (JSAC), vol. 25, no. 8, pp. 1538–1556, 2007.CrossRef N. Wisitpongphan, F. Bai, P. Mudalige, V. Sadekar, and O. Tonguz, “Routing in sparse vehicular ad hoc wireless networks,” IEEE J. Selected Areas in Communications (JSAC), vol. 25, no. 8, pp. 1538–1556, 2007.CrossRef
24.
Zurück zum Zitat F. Bai, N. Sadagopan, and A. Helmy, “BRICS: A building-block approach for analyzing routing protocols in ad hoc networks-a case study of reactive routing protocols,” in Proc. IEEE ICC, vol. 6, 2004, pp. 3618–3622. F. Bai, N. Sadagopan, and A. Helmy, “BRICS: A building-block approach for analyzing routing protocols in ad hoc networks-a case study of reactive routing protocols,” in Proc. IEEE ICC, vol. 6, 2004, pp. 3618–3622.
25.
Zurück zum Zitat X. Wu, H. R. Sadjadpour, and J. Garcia-Luna-Aceves, “Routing overhead as a function of node mobility: modeling framework and implications on proactive routing,” in IEEE Proc. MASS, 2007, pp. 1–9. X. Wu, H. R. Sadjadpour, and J. Garcia-Luna-Aceves, “Routing overhead as a function of node mobility: modeling framework and implications on proactive routing,” in IEEE Proc. MASS, 2007, pp. 1–9.
26.
Zurück zum Zitat N. Wisitpongphan, F. Bai, P. Mudalige, and O. K. Tonguz, “On the routing problem in disconnected vehicular ad-hoc networks,” in IEEE. Proc. INFOCOM, 2007, pp. 2291–2295. N. Wisitpongphan, F. Bai, P. Mudalige, and O. K. Tonguz, “On the routing problem in disconnected vehicular ad-hoc networks,” in IEEE. Proc. INFOCOM, 2007, pp. 2291–2295.
27.
Zurück zum Zitat F. Li and Y. Wang, “Routing in vehicular ad hoc networks: A survey,” IEEE Vehicular Technology Magazine, vol. 2, no. 2, pp. 12–22, 2007.CrossRef F. Li and Y. Wang, “Routing in vehicular ad hoc networks: A survey,” IEEE Vehicular Technology Magazine, vol. 2, no. 2, pp. 12–22, 2007.CrossRef
28.
Zurück zum Zitat W. Alasmary and W. Zhuang, “Mobility impact in IEEE802.11p infrastructureless vehicular networks,” Ad Hoc Networks, vol. 10, no. 2, pp. 222–230, 2012.CrossRef W. Alasmary and W. Zhuang, “Mobility impact in IEEE802.11p infrastructureless vehicular networks,” Ad Hoc Networks, vol. 10, no. 2, pp. 222–230, 2012.CrossRef
29.
Zurück zum Zitat M. Wang, Q. Shen, R. Zhang, H. Liang, and X. Shen, “Vehicle-density-based adaptive MAC for high throughput in drive-thru networks,” IEEE J. Internet of Things, vol. 1, no. 6, pp. 533–543, 2014.CrossRef M. Wang, Q. Shen, R. Zhang, H. Liang, and X. Shen, “Vehicle-density-based adaptive MAC for high throughput in drive-thru networks,” IEEE J. Internet of Things, vol. 1, no. 6, pp. 533–543, 2014.CrossRef
30.
Zurück zum Zitat H. Omar, W. Zhuang, and L. Li, “VeMAC: A TDMA-based MAC protocol for reliable broadcast in VANETs,” IEEE Trans. Mobile Computing, vol. 12, no. 9, pp. 1724–1736, 2013.CrossRef H. Omar, W. Zhuang, and L. Li, “VeMAC: A TDMA-based MAC protocol for reliable broadcast in VANETs,” IEEE Trans. Mobile Computing, vol. 12, no. 9, pp. 1724–1736, 2013.CrossRef
31.
Zurück zum Zitat H. Zhou, B. Liu, T. H. Luan, F. Hou, L. Gui, Y. Li, Q. Yu, and X. Shen, “Chaincluster: Engineering a cooperative content distribution framework for highway vehicular communications,” IEEE Trans. Intelligent Transportation Systems, vol. 15, no. 6, pp. 2644–2657, 2014.CrossRef H. Zhou, B. Liu, T. H. Luan, F. Hou, L. Gui, Y. Li, Q. Yu, and X. Shen, “Chaincluster: Engineering a cooperative content distribution framework for highway vehicular communications,” IEEE Trans. Intelligent Transportation Systems, vol. 15, no. 6, pp. 2644–2657, 2014.CrossRef
32.
Zurück zum Zitat H. Su and X. Zhang, “Clustering-based multichannel MAC protocols for QoS provisionings over vehicular ad hoc networks,” IEEE Trans. Vehicular Technology, vol. 56, no. 6, pp. 3309–3323, 2007.CrossRef H. Su and X. Zhang, “Clustering-based multichannel MAC protocols for QoS provisionings over vehicular ad hoc networks,” IEEE Trans. Vehicular Technology, vol. 56, no. 6, pp. 3309–3323, 2007.CrossRef
33.
Zurück zum Zitat D. Kumar, A. A. Kherani, and E. Altman, “Route lifetime based optimal hop selection in VANETs on highway: an analytical viewpoint,” Networking Technologies, Services, and Protocols, Performance of Computer and Communication Networks, Mobile and Wireless Communications Systems, pp. 799–814, 2006. D. Kumar, A. A. Kherani, and E. Altman, “Route lifetime based optimal hop selection in VANETs on highway: an analytical viewpoint,” Networking Technologies, Services, and Protocols, Performance of Computer and Communication Networks, Mobile and Wireless Communications Systems, pp. 799–814, 2006.
34.
Zurück zum Zitat N. Chandra Rathore, R. Tomar, S. Verma, and G. Tomar, “CMAC: A cluster based MAC protocol for VANETs,” in Proc. IEEE CISIM, 2010, pp. 563–568. N. Chandra Rathore, R. Tomar, S. Verma, and G. Tomar, “CMAC: A cluster based MAC protocol for VANETs,” in Proc. IEEE CISIM, 2010, pp. 563–568.
35.
Zurück zum Zitat E. Souza, I. Nikolaidis, and P. Gburzynski, “A new aggregate local mobility (ALM) clustering algorithm for VANETs,” in Proc. IEEE ICC, 2010, pp. 1–5. E. Souza, I. Nikolaidis, and P. Gburzynski, “A new aggregate local mobility (ALM) clustering algorithm for VANETs,” in Proc. IEEE ICC, 2010, pp. 1–5.
36.
Zurück zum Zitat K. Abboud and W. Zhuang, “Stochastic modeling of single-hop cluster stability in vehicular ad hoc networks,” IEEE Trans. Vehicular Technology, 2015 (to appear). K. Abboud and W. Zhuang, “Stochastic modeling of single-hop cluster stability in vehicular ad hoc networks,” IEEE Trans. Vehicular Technology, 2015 (to appear).
37.
Zurück zum Zitat K. Abboud and W. Zhuang, “Impact of node mobility on single-hop cluster overlap in vehicular ad hoc networks,” in Proc. ACM MSWiM, 2014, pp. 65–72. K. Abboud and W. Zhuang, “Impact of node mobility on single-hop cluster overlap in vehicular ad hoc networks,” in Proc. ACM MSWiM, 2014, pp. 65–72.
38.
Zurück zum Zitat F. Borgonovo, A. Capone, M. Cesana, and L. Fratta, “ADHOC MAC: new MAC architecture for ad hoc networks providing efficient and reliable point-to-point and broadcast services,” Wireless Networks, vol. 10, no. 4, pp. 359–366, 2004.CrossRef F. Borgonovo, A. Capone, M. Cesana, and L. Fratta, “ADHOC MAC: new MAC architecture for ad hoc networks providing efficient and reliable point-to-point and broadcast services,” Wireless Networks, vol. 10, no. 4, pp. 359–366, 2004.CrossRef
39.
Zurück zum Zitat K. Abboud and W. Zhuang, “Impact of microscopic vehicle mobility on cluster-based routing overhead in VANETs,” IEEE Trans. Vehicular Technology, connected vehicle series, 2015 (to appear). K. Abboud and W. Zhuang, “Impact of microscopic vehicle mobility on cluster-based routing overhead in VANETs,” IEEE Trans. Vehicular Technology, connected vehicle series, 2015 (to appear).
40.
Zurück zum Zitat K. Abboud and W. Zhuang, “Analysis of communication link lifetime using stochastic microscopic vehicular mobility model,” in Proc. IEEE Globecom, 2013, pp. 383–388. K. Abboud and W. Zhuang, “Analysis of communication link lifetime using stochastic microscopic vehicular mobility model,” in Proc. IEEE Globecom, 2013, pp. 383–388.
41.
Zurück zum Zitat K. Abboud and W. Zhuang, “Stochastic analysis of single-hop communication link in vehicular ad hoc networks,” IEEE Trans. Intelligent Transportation Systems, vol. 15, no. 5, pp. 2297–2307, 2014.CrossRef K. Abboud and W. Zhuang, “Stochastic analysis of single-hop communication link in vehicular ad hoc networks,” IEEE Trans. Intelligent Transportation Systems, vol. 15, no. 5, pp. 2297–2307, 2014.CrossRef
Metadaten
Titel
Introduction
verfasst von
Khadige Abboud
Weihua Zhuang
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-25507-1_1

Premium Partner