Skip to main content

2017 | OriginalPaper | Buchkapitel

2. AC and DC Microgrid with Distributed Energy Resources

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Renewable power generation and the prospect of large-scale energy storage are fundamentally changing the traditional power grid. Arising challenges occur in terms of energy management, reliability, system control, etc. Microgrid, as an active subsystem of modern power grid, has revealed its promising potential in dealing with intermittent clean power generation and emerging energy storage, partially brought by electrical vehicle batteries. In this chapter, the concept of microgrid is introduced. The main focus is placed on the basic issues of control, operation, stability, and protection of DC microgrids.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lasseter RH (2002) MicroGrids. Proc IEEE Power Eng Soc Winter Meeting 1:305–308CrossRef Lasseter RH (2002) MicroGrids. Proc IEEE Power Eng Soc Winter Meeting 1:305–308CrossRef
2.
Zurück zum Zitat Li Y, Vilathgamuwa DM, Loh PC (2004) Design, analysis, and real-time testing of a controller for multibus microgrid system. IEEE Trans Power Electron 19(5):1195–1204CrossRef Li Y, Vilathgamuwa DM, Loh PC (2004) Design, analysis, and real-time testing of a controller for multibus microgrid system. IEEE Trans Power Electron 19(5):1195–1204CrossRef
3.
Zurück zum Zitat Katiraei F, Iravani MR, Lehn PW (2005) Microgrid autonomous operation during and subsequent to islanding process. IEEE Trans Power Del 20(1):248–257CrossRef Katiraei F, Iravani MR, Lehn PW (2005) Microgrid autonomous operation during and subsequent to islanding process. IEEE Trans Power Del 20(1):248–257CrossRef
4.
Zurück zum Zitat Blaabjerg F, Chen Z, Kjaer SB (2004) Power electronics as efficient interface in dispersed power generation systems. IEEE Trans Power Electron 19(5):1184–1194CrossRef Blaabjerg F, Chen Z, Kjaer SB (2004) Power electronics as efficient interface in dispersed power generation systems. IEEE Trans Power Electron 19(5):1184–1194CrossRef
5.
Zurück zum Zitat Dimeas AL, Hatziargyriou ND (2005) Operation of a multiagent system for microgrid control. IEEE Trans Power Syst 20:1447–1455CrossRef Dimeas AL, Hatziargyriou ND (2005) Operation of a multiagent system for microgrid control. IEEE Trans Power Syst 20:1447–1455CrossRef
6.
Zurück zum Zitat Ito Y, Yang Z, Akagi H (2004) DC micro-grid based distribution power generation system. Proc IEEE Int Power Electron Motion Control Conf 3:1740–1745 Ito Y, Yang Z, Akagi H (2004) DC micro-grid based distribution power generation system. Proc IEEE Int Power Electron Motion Control Conf 3:1740–1745
7.
Zurück zum Zitat ESB Networks—Distribution Code, Version 1.4, Feb 2005 ESB Networks—Distribution Code, Version 1.4, Feb 2005
8.
Zurück zum Zitat Velasco D, Trujillo C, Garcera G, Figueres E (2011) An active anti-islanding method based on phase PLL perturbation. IEEE Trans Power Electron 26(4):1056–1066CrossRef Velasco D, Trujillo C, Garcera G, Figueres E (2011) An active anti-islanding method based on phase PLL perturbation. IEEE Trans Power Electron 26(4):1056–1066CrossRef
9.
Zurück zum Zitat Bifaretti S, Lidozzi A, Solero L, Crescimbini F (2015) Anti-islanding detector based on a robust PLL. IEEE Trans Ind Appl 51(1):398–405CrossRef Bifaretti S, Lidozzi A, Solero L, Crescimbini F (2015) Anti-islanding detector based on a robust PLL. IEEE Trans Ind Appl 51(1):398–405CrossRef
10.
Zurück zum Zitat Kakigano H, Miura Y, Ise T (2010) Low-voltage bipolar-type dc microgrid for super high quality distribution. IEEE Trans Power Electron 25(12):3066–3075CrossRef Kakigano H, Miura Y, Ise T (2010) Low-voltage bipolar-type dc microgrid for super high quality distribution. IEEE Trans Power Electron 25(12):3066–3075CrossRef
11.
Zurück zum Zitat Sannino A, Postiglione G, Bollen MHJ (2003) Feasibility of a dc network for commercial facilities. IEEE Trans Ind Appl 39(5):1499–1507CrossRef Sannino A, Postiglione G, Bollen MHJ (2003) Feasibility of a dc network for commercial facilities. IEEE Trans Ind Appl 39(5):1499–1507CrossRef
12.
Zurück zum Zitat Salomonsson D, Sannino A (2007) Low-voltage dc distribution system for commercial power systems with sensitive electronic loads. IEEE Trans Power Del 22(3):1620–1627CrossRef Salomonsson D, Sannino A (2007) Low-voltage dc distribution system for commercial power systems with sensitive electronic loads. IEEE Trans Power Del 22(3):1620–1627CrossRef
13.
Zurück zum Zitat Chen D, Xu L (2012) Autonomous DC voltage control of a DC microgrid with multiple slack terminals. IEEE Trans Power Syst 27(4):1897–1905CrossRef Chen D, Xu L (2012) Autonomous DC voltage control of a DC microgrid with multiple slack terminals. IEEE Trans Power Syst 27(4):1897–1905CrossRef
14.
Zurück zum Zitat Zhou T, Francois B (2011) Energy management and power control of a hybrid active wind generator for distributed power generation and grid integration. IEEE Trans Ind Electron 58(1):95–104CrossRef Zhou T, Francois B (2011) Energy management and power control of a hybrid active wind generator for distributed power generation and grid integration. IEEE Trans Ind Electron 58(1):95–104CrossRef
15.
Zurück zum Zitat Schonberger J, Duke R, Round SD (2006) DC-bus signaling: a distributed control strategy for a hybrid renewable nanogrid. IEEE Trans Ind Electron 53(5):1453–1460CrossRef Schonberger J, Duke R, Round SD (2006) DC-bus signaling: a distributed control strategy for a hybrid renewable nanogrid. IEEE Trans Ind Electron 53(5):1453–1460CrossRef
16.
Zurück zum Zitat Xu L, Chen D (2011) Control and operation of a DC microgrid with variable generation and energy storage. IEEE Trans Power Del 26(4):2513–2522CrossRef Xu L, Chen D (2011) Control and operation of a DC microgrid with variable generation and energy storage. IEEE Trans Power Del 26(4):2513–2522CrossRef
17.
Zurück zum Zitat Chen D, Xu L, Yao L (2013) DC voltage variation based autonomous control of DC microgrids. IEEE Trans Power Del 28(2):637–648MathSciNetCrossRef Chen D, Xu L, Yao L (2013) DC voltage variation based autonomous control of DC microgrids. IEEE Trans Power Del 28(2):637–648MathSciNetCrossRef
18.
Zurück zum Zitat Guerrero JM, Vasquez JC, Matas J, Vicũna LG, Castilla M (2011) Hierarchical control of droop-controlled AC and DC microgrids—a general approach toward standardization. IEEE Trans Ind Electron 58(1):158–172CrossRef Guerrero JM, Vasquez JC, Matas J, Vicũna LG, Castilla M (2011) Hierarchical control of droop-controlled AC and DC microgrids—a general approach toward standardization. IEEE Trans Ind Electron 58(1):158–172CrossRef
19.
Zurück zum Zitat Lu X, Guerrero JM, Sun K, Vasquez JC (2014) An improved droop control method for dc microgrids based on low bandwidth communication with dc bus voltage restoration and enhanced current sharing accuracy. IEEE Trans Power Electron 29(4):1800–1812CrossRef Lu X, Guerrero JM, Sun K, Vasquez JC (2014) An improved droop control method for dc microgrids based on low bandwidth communication with dc bus voltage restoration and enhanced current sharing accuracy. IEEE Trans Power Electron 29(4):1800–1812CrossRef
20.
Zurück zum Zitat Chen D, Xum L, Yao L (2012) DC network stability and dynamic analysis using virtual impedance method. In: Proceedings of 38th Annual Conference on IEEE Industrial Electronics Society, pp 5625–5630 Chen D, Xum L, Yao L (2012) DC network stability and dynamic analysis using virtual impedance method. In: Proceedings of 38th Annual Conference on IEEE Industrial Electronics Society, pp 5625–5630
21.
Zurück zum Zitat Wu M, Lu DD-C (2015) A novel stabilization method of LC input filter with constant power loads without load performance compromise in DC microgrids. IEEE Trans Ind Electron 62(7):4552–4562CrossRef Wu M, Lu DD-C (2015) A novel stabilization method of LC input filter with constant power loads without load performance compromise in DC microgrids. IEEE Trans Ind Electron 62(7):4552–4562CrossRef
22.
Zurück zum Zitat Liu X, Forsyth A, Cross A (2007) Negative input-resistance compensator for a constant power load. IEEE Trans Ind Electron 54(6):3188–3196CrossRef Liu X, Forsyth A, Cross A (2007) Negative input-resistance compensator for a constant power load. IEEE Trans Ind Electron 54(6):3188–3196CrossRef
23.
Zurück zum Zitat Liu X, Zhou Y, Zhang W, Ma S (2011) Stability criteria for constant power loads with multistage LC filters. IEEE Trans Veh Technol 60(5):2042–2049CrossRef Liu X, Zhou Y, Zhang W, Ma S (2011) Stability criteria for constant power loads with multistage LC filters. IEEE Trans Veh Technol 60(5):2042–2049CrossRef
24.
Zurück zum Zitat Magne P, Nahid-Mobarakeh B, Pierfederici S (2014) Dynamic consideration of DC microgrids with constant power loads and active damping system; a design method for fault-tolerant stabilizing system. IEEE Trans Emerg Sel Topics Power Electron 2(3):562–570CrossRef Magne P, Nahid-Mobarakeh B, Pierfederici S (2014) Dynamic consideration of DC microgrids with constant power loads and active damping system; a design method for fault-tolerant stabilizing system. IEEE Trans Emerg Sel Topics Power Electron 2(3):562–570CrossRef
25.
Zurück zum Zitat Salomonsson D, Soder L, Sannino A (2009) Protection of low-voltage dc microgrids. IEEE Trans Power Del 24(3):1045–1053CrossRef Salomonsson D, Soder L, Sannino A (2009) Protection of low-voltage dc microgrids. IEEE Trans Power Del 24(3):1045–1053CrossRef
26.
Zurück zum Zitat Yao X, Herrera L, Ji S, Zou K, Wang J (2014) Characteristic study and time-domain discrete-wavelet-transform based hybrid detection of series DC arc faults. IEEE Trans Power Electron 29(6):3103–3115CrossRef Yao X, Herrera L, Ji S, Zou K, Wang J (2014) Characteristic study and time-domain discrete-wavelet-transform based hybrid detection of series DC arc faults. IEEE Trans Power Electron 29(6):3103–3115CrossRef
27.
Zurück zum Zitat Yao X, Herrera L, Wang J (2015) Impact evaluation of series dc arc faults in DC microgrids. In: IEEE Applied Power Electronics Conference and Exposition (APEC), pp 2953–2958. Yao X, Herrera L, Wang J (2015) Impact evaluation of series dc arc faults in DC microgrids. In: IEEE Applied Power Electronics Conference and Exposition (APEC), pp 2953–2958.
28.
Zurück zum Zitat Yao X, Herrera L, Huang Y, Wang J (2012) The detection of DC arc fault: experimental study and fault recognition. In: IEEE Applied Power Electronics Conference and Exposition (APEC), Twenty-Seventh Annual Meeting, pp 1720–1727 Yao X, Herrera L, Huang Y, Wang J (2012) The detection of DC arc fault: experimental study and fault recognition. In: IEEE Applied Power Electronics Conference and Exposition (APEC), Twenty-Seventh Annual Meeting, pp 1720–1727
29.
Zurück zum Zitat Yao X, Ji S, Herrera L, Wang J (2011) DC arc fault: characteristic study and fault recognition. In: IEEE 1st International Conference on Electric Power Equipment Switching Technology (ICEPE-ST), pp 387–390 Yao X, Ji S, Herrera L, Wang J (2011) DC arc fault: characteristic study and fault recognition. In: IEEE 1st International Conference on Electric Power Equipment Switching Technology (ICEPE-ST), pp 387–390
30.
Zurück zum Zitat Uriarte FM, Gattozzi AL, Herbst JD, Estes HB, Hotz TJ, Kwasinski A, Hebner RE (2012) A DC arc model for series faults in low voltage microgrids. IEEE Trans Smart Grid 3(4):2063–2070CrossRef Uriarte FM, Gattozzi AL, Herbst JD, Estes HB, Hotz TJ, Kwasinski A, Hebner RE (2012) A DC arc model for series faults in low voltage microgrids. IEEE Trans Smart Grid 3(4):2063–2070CrossRef
31.
Zurück zum Zitat IEEE Guide for the Protection of Stationary Battery Systems (1998) IEEE Std. 1375-1998 IEEE Guide for the Protection of Stationary Battery Systems (1998) IEEE Std. 1375-1998
Metadaten
Titel
AC and DC Microgrid with Distributed Energy Resources
verfasst von
Dong Chen
Lie Xu
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-43651-7_2