Skip to main content
Erschienen in:
Buchtitelbild

2023 | OriginalPaper | Buchkapitel

1. Chemisches Element Wasserstoff

verfasst von : Hartmut Frey, Kay Golze, Michael Hirscher, Michael Felderhoff

Erschienen in: Energieträger Wasserstoff

Verlag: Springer Fachmedien Wiesbaden

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Zusammenfassung

Wasserstoff zeichnet sich gegenüber anderen Gasen durch eine Reihe ungewöhnlicher Eigenschaften aus. So ist er das mit Abstand leichteste Element. Auch im flüssigen Zustand ist die Dichte klein (ρ = 0,071 kg/l).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Frey, H. und R. A, Haefer, Tieftemperaturtechnologie, VDI-Verlag1961.
 
2
Wasserstoff Farbenlehre. In: solarify.eu. 18. März 2020,
 
3
Peter W. Atkins: Kurzlehrbuch Physikalische Chemie. Wiley–VCH, Weinheim 2001, ISBN 3–527-30.433–9.
 
4
I. Barin, O. Knacke; Thermochemical Properties of Inorganic Substances, S. 316, 322, 323, 564, Düsseldorf 1973.
 
5
I. Barin, O. Knacke; Thermochemical Properties of Inorganic Substances, S. 316, 322, 323, 564, Düsseldorf 1973.
 
6
Moore, W.G: Phys.Chemistry, 402, Longman (1972).
 
7
Rep.NASA/ASEE, „Hydrogenergy Carrier“, I, 13/1973.
 
8
O’Brien, P.Seto, J.Elchem.Soc., 117 (1). 32 (1970).
 
9
Kelly, E.J., J.Elchem.Soc., 112 (2), 124 (2), 124 (1965).
 
10
Julius Tafel: Über die Polarisation bei kathodischer Wasserstoffentwicklung. In: Wilhelm Ostwald, J. H. van’t Hoff (Hrsg.): Zeitschrift für physikalische Chemie, Stöchiometrie und Verwandtschaftslehre. Band 50. Wilhelm Engelmann, Leipzig 1905, S. 641–712,
 
11
P. W. Atkins: Physikalische Chemie. 2. Nachdr. d. 1. Auflage. VCH, Weinheim 1990, ISBN 3–527-25.913–9, S. 175.
 
12
G. Fischer, H. Frey, G. Hambitzer, M. Krausa: A new Manufacturing Technology and Properties of Proton Conductive Membranes for Fuel Cells The Polymer Processing Society, European Meeting, September 1995, Stuttgart.
 
13
M. Schuster, W.H. Meyer, G. Wegner, H.G. Herze, M. Ise, M. Schuster, K.D. Kreuer, J. Maier, Silid State Ionics, 145, 85 (2001).
 
14
M. Gelus, J.M. Bonnier: J.Chim.Phys.Chim.Biol., 65,253 (1968).
 
15
Methoden der anorganischen Chemie (Houben-Weyl), 4. Auflage, Stuttgart, Thieme, 1994, E8b, 401.
 
16
L.D. Kruer, A. Fuchs, M. Ise, M. Spaeht, J. Maier. Electrochim.Act, 43, 1281 (1998).
 
17
Nature, Online-Veröffentlichung vom 26. November 2014;
 
18
Science 6213, 1092–1096 (2014).
 
19
Hull, M.N.: Energy Conversion, 10 (4), 215 (1970).
 
20
White, D.W., Rep. Electrolyte Cell Technology, General Electric, 68-C-254 (1968).
 
21
Takahashi, T., H. Iwahara, Energy Con., ^11 (3) 105 (1971).
 
22
F.J. H. Voorhoeve, Advanced Materials in Catalysis, Academic Press New York, 1977, pp. 129
 
23
H. R. Khan and H. Frey, J. of Alloys and Compounds, 190 (1993) 209–217
 
24
Lurgi Handbuch 1979.
 
25
Frey, H. and H.R. Khan Ed. Handbook of Thin-Film Technology, Springer, 2015, https://​doi.​org/​10.​1007/​978-3-642-05430-3.
 
26
H. Hofmann, Chem.-Ing-Techn. 48 (1976), 87.
 
27
Rep. NASA/ASEE Hydrogen Energy Carrier, II, 31 (1973).
 
28
G. de Beni C. Marchetti. Euro spectra 9 (1970) Nr. 2. s. 46–50.
 
29
Dan Gao, Dongfang Jiang, Pei Liu, Zheng Li, Sangao Hu, Hong Xu, An integrated energy storage system based on hydrogen storage: Process configuration and case studies with wind power. Energy 66 (2014) 332–341 https://​doi.​org/​10.​1016/​j.​energy.​2014.​01.​095.
 
30
K.F. Knoche, Umschau 75/1975, 313.
 
31
C.C., C.B. Golver, Ind.Eng.Chem., 49, 387 (1957).
 
32
Longacre, A,, H, Truby, 165th Nat. Meeting oft he Am.Chem. Soc., Los Angeles (1971).
 
33
Rep., Forster Wheeler Cor., Heat Eng., So (1971).
 
34
RECCS-Studie. (PDF; 1,09 MB) Kap. 4–8. Wuppertal Institut für Klima, Umwelt, Energie, 2008,
 
35
Fuel Cell Technologies and Hydrogen Production/Distribution Options. Deutsches Zentrum für Luft- und Raumfahrt,
 
36
Vaclav Smil: Nitrogen cycle and world food production. (PDF) World Agriculture 2. 9–1., 2011,
 
37
Boy Cornils, Wolfgang A. Herrmann, M. Muhler, C. Wong: Catalysis from A to Z: A Concise Encyclopedia. Verlag Wiley–VCH, 2007, ISBN 978–3-527–31.438-6,
 
38
Zhixiong You, Koji Inazu, Ken-ichi Aika, Toshihide Baba: Electronic and structural promotion of barium hexaaluminate as a ruthenium catalyst support for ammonia synthesis. In: Journal of Catalysis. Band 251, Nr. 2, Oktober 2007, https://​doi.​org/​10.​1016/​j.​jcat.​2007.​08.​006.
 
39
Roman J. Press u. a.: Introduction to hydrogen Technology. John Wiley & Sons, 2008, ISBN 978–0-471–77.985-8, S. 99–125.
 
40
Rep., Chem.Eng., 68 (3), 72 (1971).
 
41
N. Takezawa, R. Mezaki, Can.J.Eng.Chem., 48 (4), 148 (1956).
 
42
R. Chahine and T.K. Bose, Characterization and optimization of adsorbents for hydrogen storage, Dechema, Frankfurt, 1996.
 
43
R. Chahine and T.K. Bose, Low-pressure adsorption storage of hydrogen, International Journal of Hydrogen Energy}, 1994, 19, 161–164.
 
44
M. Schlichtenmayer, B. Streppel and M. Hirscher, Hydrogen physisorption in high SSA microporous materials – A comparison between AX-21_33 and MOF-177 at cryogenic conditions, International Journal of Hydrogen Energy 2011, 36, 586–591.
 
45
T. Kyotani, Z. Ma, and A.Tomita, Template synthesis of novel porous carbons using various types of Zeolites, Carbon 2003, 41, 1451–1459.
 
46
T.W. Kim, I.S. Park, and R. Ryoo, A synthetic route to ordered mesoporous carbon materials with.
graphitic pore walls, Angewandte Chemie Int. Ed.2003, 42, 4375–4379.
 
47
S. Iijima, Helical microtubules of graphitic carbon, Nature, 1991, 354, 56–58.
 
48
N.B. McKeown, P.M. Budd, and D. Book, Microporous polymers as potential hydrogen storage materials, Macromolecular Rapid Communications 2007, 28, 995–1002.
 
49
J. Germain, J.M.J. Frechet, and F. Svec, Hypercrosslinked polyanilines with nanoporous structure and high
surface area: potential adsorbents for hydrogen storage, Journal of Materials Chemistry 2007, 17, 4989–4997.
 
50
J.H. Ahn, J.E. Jang, C.G. Oh, S.K. Ihm, J. Cortez, and D.C. Sherrington, Rapid generation and control of microporosity, bimodal pore size distribution, and surface area in Davankov-type hyper-cross-linked resins, Macromolecules 2006, 39, 627–632.
 
51
A.G. Wong-Foy, A.J. Matzger, and O.M. Yaghi, Exceptional H2 saturation uptake in microporous metal–organic
Frameworks, Journal of the American Chemical Society 2006, 128, 3494–3495.
 
52
M. Dinca and J.R. Long, Strong H2 binding and selective gas adsorption within the microporous coordination solid Mg3 (O2 C-C10 H6-CO2)3, Journal of the American Chemical Society 2005, 127, 9376–9377.
 
53
P.D.C. Dietzel, R. Blom, and H. Fjellvag, Base-induced formation of two magnesium metal–organic framework compounds with a bifunctional tetratopic ligand, European Journal of Inorganic Chemistry 2008, 23, 3624–3632.
 
54
C. Volkringer, T. Loiseau, J. Marrot, and G. Ferey, A MOF-type magnesium benzene-1,3,5-tribenzoate with two-fold interpenetrated ReO3 nets, CrystEngComm 2009, 11, 58–60.
 
55
A.U. Czaja, N. Trukhan, and U. Müller, Industrial applications of metal–organic frameworks, Chemical Society Reviews 2009, 38, 1284–1293.
 
56
D.P. Broom and M. Hirscher, Irreproducibility in hydrogen storage material research, Energy & Environmental Science, 2016, 9, 3368–3380.
 
57
A. Züttel, P. Sudan, P. Mauron, and P. Wenger, Model for the hydrogen adsorption on carbon nanostructures, Applied Physics A – Materials Science & Processing, 2004, 78, 941–946.
 
58
H.W. Langmi, D. Book, A. Walton, S.R. Johnson, M.M. Al-Mamouri, J.D. Speight, P.P. Edwards, I.R. Harris, and P.A. Anderson, Hydrogen storage in ion-exchanged zeolites, Journal of Alloys and Compounds 2005, 404–406, 637–642.
 
59
J.G. Vitillo, G. Ricchiardi, G. Spoto, and A. Zecchina, Theoretical maximal storage of hydrogen in zeolitic frameworks, Physical Chemistry Chemical Physics 2005, 7, 3948–3954.
 
60
C.D. Wood, B. Tan, A. Trewin, H. Niu, D. Bradshaw, M.J. Rosseinsky, Y.Z. Khimyak, N.L. Campbell, R. Kirk, E. Stoeckel, and A.I. Cooper, Hydrogen storage in microporous hypercrosslinked organic polymer networks, Chemistry of Materials 2007, 19, 2034–2048.
 
61
B. Panella, M. Hirscher, H. Pütter, and U. Müller, Hydrogen adsorption in metal–organic frameworks: Cu-MOFs and Zn-MOFs compared, Advanced Functional Materials 2006, 16, 520–524.
 
62
A. Dailly, J.J. Vajo, and C.C. Ahn, Saturation of hydrogen sorption in Zn benzenedicarboxylate and Zn Naphthalenedicarboxylate, The Journal of Physical Chemistry B 2006, 110, 1099–1101.
 
63
H. Furukawa, N. Ko, Y. Go, N. Aratani, S. B. Choi, E. Choi, A. Özgür Yazaydin, R. Q. Snurr, M. O’Keeffe, J. Kim, O. M. Yaghi, Ultrahigh porosity in metal–organic frameworks, Science 2010, 329, 424–428.
 
64
M. Hirscher, Hydrogen Storage by Cryoadsorption in Ultrahigh-Porosity Metal–Organic Frameworks, Angewandte Chemie Int. Ed. 2011, 50, 581–582.
 
65
B. Panella, M. Hirscher, and S. Roth, Hydrogen adsorption in different carbon nanostructures, Carbon 2005, 43, 2209–2214.
 
66
M.G. Nijkamp, J.E.M.J. Raaymakers, A.J. van Dillen, and K.P. deJong, Hydrogen storage using physisorption – materials demands, Applied Physics A 2001, 72, 619–623.
 
67
N. Texier-Mandoki, J. Dentzer, T. Piquero, S. Saadallah, P. David, and C. Vix-Guterl. Hydrogen storage in activated carbon materials: Role of the nanoporous texture, Carbon 2004, 42, 2744–2747.
 
68
M. Hirscher and B. Panella, Hydrogen storage in metal–organic frameworks, Scripta Materialia 2007, 56, 809–812.
 
69
B. Schmitz, U. Müller, N. Trukhan, M. Schubert, G. Férey, and M. Hirscher, Heat of adsorption for hydrogen in microporous high-surface-area materials, ChemPhysChem 2008, 9, 2181–2184.
 
70
R. Balderas-Xicohtencatl, M. Schlichtenmayer, and M. Hirscher, Volumetric Hydrogen Storage Capacity in Metal–Organic Frameworks, Energy Technology 2018, 6, 578–582.
 
71
H.L. Jiang, T.A. Makal, and H.-C. Zhou, Interpenetration control in metal–organic frameworks for functional applications, Coordination Chemistry Reviews 2013, 257, 2232–2249.
 
72
R. Balderas-Xicohtencatl, P. Schmieder, D. Denysenko, D. Volkmer, and M. Hirscher, High Volumetric Hydrogen Storage Capacity using Interpenetrated Metal–Organic Frameworks, Energy Technology 2018, 6, 510–512.
 
73
R. Zacharia, D. Cossement, L. Lafi, and R. Chahine, Volumetric hydrogen sorption capacity of monoliths prepared by mechanical densification of MOF-177, J. Mater. Chem. 2010, 20, 2145–2151.
 
74
M. Schlichtenmayer and M. Hirscher, The usable capacity of porous materials for hydrogen storage, Applied Physics A 2016, 122, 379.
 
75
M.D. Allendorf, Z. Hulvey, T. Gennett, A. Ahmed, T. Autrey, J. Camp, E.S. Cho, H. Furukawa, M. Haranczyk, and M. Head-Gordon, An assessment of strategies for the development of solid-state adsorbents for vehicular hydrogen storage, Energy & Environmental Science 2018, 11, 2784–2812.
 
76
S.K. Bhatia and A.L. Myers, Optimum conditions for adsorptive storage, Langmuir 2006, 22, 1688–1700.
 
77
M. Schlichtenmayer and M. Hirscher, Nanosponges for hydrogen storage, J. Mater. Chem. 2012, 22, 10.134–10.143.
 
78
Y. Ming, J. Purewal, D. Liu, A. Sudik, C. Xu, J. Yang, M. Veenstra, K. Rhodes, R. Soltis, J. Warner, M. Gaab, U. Müller, and D.J. Siegel, Thermophysical properties of MOF-5 powders, Microporous Mesoporous Mater. 2014, 185, 235–244.
 
79
D.P. Broom, C.J. Webb, K.E. Hurst, P.A. Parilla, T. Gennett, C.M. Brown, R. Zacharia, E. Tylianakis, E. Klontzas, G.E. Froudakis, T.A. Steriotis, P.N. Trikalitis, D.L. Anton, B. Hardy, D. Tamburello, C. Corgnale, B.A. van Hassel, D. Cossement, R. Chahine, M. Hirscher, Outlook and challenges for hydrogen storage in nanoporous materials, Applied Physics A 2016, 122.
 
80
B. Hardy, C. Corgnale, R. Chahine, M.-A. Richard, S. Garrison, D. Tamburello, D. Cossement, and D. Anton, Modeling of adsorbent based hydrogen storage systems, Int. J. Hydrog. Energy 2012, 37, 5691–5705.
 
81
C. Corgnale, B. Hardy, R. Chahine, D. Cossement, D. Tamburello, and D. Anton, Simulation of hydrogen adsorption systems adopting the flow through cooling concept, Int. J. Hydrog. Energy 2014, 39, 17.083–17.091.
 
82
Y. Ming, H. Chi, R. Blaser, C. Xu, J. Yang, M. Veenstra, M. Gaab, U. Müller, C. Uher, and D.J. Siegel, Anisotropic thermal transport in MOF-5 composites, Int. J. Heat Mass Transf. 2015, 82, 250–258.
 
83
B. Bogdanović, R.A. Brand, M. Marjanović, M. Schwickardi, J. Tölle, J. Alloys Compd. 2000, 302, 36.
 
84
G. Sandrock, J. Alloys Compd. 1999, 293, 877.
 
85
D. Shaltiel, I. Jacob, D. Davidov, J. Less-Common. Met. 1977, 53, 117.
 
86
M. Bououdina, D. Grant, G. Walker, Int. J. Hydrogen Energy, 2006, 31, 177.
 
87
E. Akiba, M. Okada M (2002), MRS Bulletin, 2002, 699.
 
88
E. Akiba, Curr. Opin. Solid St. Mater. 1999, 4, 267.
 
89
T. Tamura, T. Kazumi, A. Kamegawa, H. Takamura, M. Okada, J. Alloys Compd. 2003, 356, 505.
 
90
J. Graetz, J.J. Reilly, Scripta Mater. 2007, 56, 835.
 
91
G. Sandrock, J.J. Reilly, J. Graetz, W.M. Zhou, M. Johnson, J. Wegrzyn, Appl. Phys. A, 2005, 80, 687.
 
92
V.A. Yartys, et al. Int. J. Hydrogen Energy, 2019, 44, 7809.
 
93
I. Ivanov, I. Konstanchuk, A. Stepanov, V. Boldyrev, J. Less-Common Met, 1987, 131, 259.
 
94
W. Oelerich, T. Klassen, R. Bormann, J. Alloys Compd. 2001, 315, 237.
 
95
G. Liang, J. Huot, S. Boily, A. van Neste, R. Schulz, J. Alloys Compd. 1999, 315, 237.
 
96
B. Bogdanović, M. Schwickardi, J. Alloys Compd. 1997, 253–254, 1.
 
97
K. Feucht, W. Gelse, R. Povel und G. Withalm, Naturwissenschaften, 1988, 75, 107.
 
98
H. Pommer, P. Hauschildt, R. Teppner, W. Hartung, ThyssenKrupp techforum, 2006, Heft 1, 64.
 
102
M. Felderhoff, B. Bogdanović, Int. J. Mol. Sci. 2009, 10, 325.
 
103
M. Adams et al. 2022 Prog. Energy, 4, 032.008.
 
104
R. Schrawer: Technology of Hydrogen Liquefraction. Use of liqued Hydrogen, his Storage and Transport or Transmission, in: The Hydrogen Energy Concept. Ispra Courses 29, 9-3-10.1975, H2 / 75 Nr. 14.
 
Metadaten
Titel
Chemisches Element Wasserstoff
verfasst von
Hartmut Frey
Kay Golze
Michael Hirscher
Michael Felderhoff
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-658-40967-8_1