Skip to main content

2024 | OriginalPaper | Buchkapitel

Data-Driven Multi-scale Numerical Homogenization

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Homogenization for complex, nonlinear materials, including composites and textiles, is considered. The effect of the microstructure, including nonlinearity, for various loadings is transferred to the homogenized medium through the Representative Volume Element technique. The classical approach through nested finite element analysis, the so-called FEM2 method, is very expensive. Data-driven techniques have been proposed, where the homogenization is replaced by a surrogate model based on data generated through selected numerical or physical experiments. An artificial neural network surrogate constitutive model leads to a FEANN method. Furthermore data-driven solution methods have been recently proposed, as a development of the LATIN iterative method. A short review of recent contributions is presented, with examples from composites, including woven composites and auxetics. Research topics will be discussed, including the development of Physics Informed Neural Network surrogates.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Fish, J., Wagner, G.J., Keten, S.: Mesoscopic and multiscale modelling in materials. Nat. Mater. 20, 774–786 (2021)CrossRef Fish, J., Wagner, G.J., Keten, S.: Mesoscopic and multiscale modelling in materials. Nat. Mater. 20, 774–786 (2021)CrossRef
2.
Zurück zum Zitat Yvonnet, J.: Computational Homogenization of Heterogeneous Materials with Finite Elements. Springer, Berlin (2019)CrossRef Yvonnet, J.: Computational Homogenization of Heterogeneous Materials with Finite Elements. Springer, Berlin (2019)CrossRef
3.
Zurück zum Zitat Drosopoulos, G.A., Stavroulakis, G.E.: Non-linear Mechanics for Composite. Heterogeneous Structures. CRC Press, Taylor and Francis (2022) Drosopoulos, G.A., Stavroulakis, G.E.: Non-linear Mechanics for Composite. Heterogeneous Structures. CRC Press, Taylor and Francis (2022)
4.
Zurück zum Zitat Urbański, A.: The unified, finite element formulation of homogenization of structural members with a periodic microstructure. Cracow University of Technology, (2005) Urbański, A.: The unified, finite element formulation of homogenization of structural members with a periodic microstructure. Cracow University of Technology, (2005)
5.
Zurück zum Zitat Geers, M.G.D., Kouznetsova, V.G., Brekelmans, W.A.M.: Multi-scale computational homogenization: Trends and challenges. J. Comput. Appl. Math. 234, 2175–2182 (2010)CrossRef Geers, M.G.D., Kouznetsova, V.G., Brekelmans, W.A.M.: Multi-scale computational homogenization: Trends and challenges. J. Comput. Appl. Math. 234, 2175–2182 (2010)CrossRef
6.
Zurück zum Zitat Michel, J.-C., Moulinec, H., Suquet, P.: Effective properties of composite materials with periodic microstructure: a computational approach. Comput. Methods Appl. Mech. Eng. 172, 109–143 (1999)CrossRef Michel, J.-C., Moulinec, H., Suquet, P.: Effective properties of composite materials with periodic microstructure: a computational approach. Comput. Methods Appl. Mech. Eng. 172, 109–143 (1999)CrossRef
7.
Zurück zum Zitat Zohdi, T.I., Wriggers, P.: An Introduction to Computational Micromechanics. Springer, Berlin (2008) Zohdi, T.I., Wriggers, P.: An Introduction to Computational Micromechanics. Springer, Berlin (2008)
8.
Zurück zum Zitat Tikarrouchine, E., Benaarbia, A., Chatzigeorgiou, G., Meraghni, F.: Non-linear FE2 multiscale simulation of damage, micro and macroscopic strains in polyamide 66-woven composite structures: analysis and experimental validation. Compos. Struct. 255, 112926 (2021)CrossRef Tikarrouchine, E., Benaarbia, A., Chatzigeorgiou, G., Meraghni, F.: Non-linear FE2 multiscale simulation of damage, micro and macroscopic strains in polyamide 66-woven composite structures: analysis and experimental validation. Compos. Struct. 255, 112926 (2021)CrossRef
9.
Zurück zum Zitat Drosopoulos, G.A., Giannis, K., Stavroulaki, M.E., Stavroulakis, G.E.: Metamodeling-assisted numerical homogenization for masonry and cracked structures. ASCE J. Eng. Mech. 144(8), art. no. 04018072, (2018) Drosopoulos, G.A., Giannis, K., Stavroulaki, M.E., Stavroulakis, G.E.: Metamodeling-assisted numerical homogenization for masonry and cracked structures. ASCE J. Eng. Mech. 144(8), art. no. 04018072, (2018)
10.
Zurück zum Zitat Drosopoulos, G.A., Stavroulakis, G.E.: Data-driven computational homogenization using neural networks: FE2-NN application on damaged masonry. ACM J. Comput. Cult. Heritage 14(1), 1–19 (2020) Drosopoulos, G.A., Stavroulakis, G.E.: Data-driven computational homogenization using neural networks: FE2-NN application on damaged masonry. ACM J. Comput. Cult. Heritage 14(1), 1–19 (2020)
11.
Zurück zum Zitat Yvonnet, J., He, Q.C., Li, P.: Reducing internal variables and improving efficiency in data-driven modelling of anisotropic damage from RVE simulations. Comput. Mech. 72, 37–55 (2023)CrossRef Yvonnet, J., He, Q.C., Li, P.: Reducing internal variables and improving efficiency in data-driven modelling of anisotropic damage from RVE simulations. Comput. Mech. 72, 37–55 (2023)CrossRef
12.
Zurück zum Zitat Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. Int. J. Numer. Meth. Eng. 104(12), 1061–1084 (2015)CrossRef Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. Int. J. Numer. Meth. Eng. 104(12), 1061–1084 (2015)CrossRef
13.
Zurück zum Zitat Urbański, A., Szymon, l., Marcin, D.: Multi-scale modeling of brick masonry using a numerical homogenization technique and an artificial neural network. Arch. Civil Eng. 68(4), 179–197 (2022) Urbański, A., Szymon, l., Marcin, D.: Multi-scale modeling of brick masonry using a numerical homogenization technique and an artificial neural network. Arch. Civil Eng. 68(4), 179–197 (2022)
15.
Zurück zum Zitat Fish, J., Yu, Y.: Data-physics driven reduced order homogenization. Int. J. Numer. Methods Engrg. 124(7), 1620–1645 (2023)CrossRef Fish, J., Yu, Y.: Data-physics driven reduced order homogenization. Int. J. Numer. Methods Engrg. 124(7), 1620–1645 (2023)CrossRef
16.
Zurück zum Zitat As’ ad, F., Avery, P., Farhat, C.: A mechanics-informed artificial neural network approach in data-driven constitutive modeling. Int. J. Numer. Methods Engrg. 123(12), 2738–2759 (2022) As’ ad, F., Avery, P., Farhat, C.: A mechanics-informed artificial neural network approach in data-driven constitutive modeling. Int. J. Numer. Methods Engrg. 123(12), 2738–2759 (2022)
17.
Zurück zum Zitat Mroz, Z., Stavroulakis, G.E. (eds.),: Parameter Identification of Materials and Structures. CISM Lecture Notes vol. 469, Springer, Wien, New York, Lecture notes of CISM Course (2005) Mroz, Z., Stavroulakis, G.E. (eds.),: Parameter Identification of Materials and Structures. CISM Lecture Notes vol. 469, Springer, Wien, New York, Lecture notes of CISM Course (2005)
18.
Zurück zum Zitat Stavroulakis, G.E.: Inverse and crack identification problems in mechanics. Springer, Kluwer Academic (2000) Stavroulakis, G.E.: Inverse and crack identification problems in mechanics. Springer, Kluwer Academic (2000)
19.
Zurück zum Zitat Protopapadakis, E., et al.: A genetically optimized neural classifier applied to numerical pile integrity tests considering concrete piles. Comput. Struct. 162, 68–79 (2016)CrossRef Protopapadakis, E., et al.: A genetically optimized neural classifier applied to numerical pile integrity tests considering concrete piles. Comput. Struct. 162, 68–79 (2016)CrossRef
20.
Zurück zum Zitat Spathopoulos, S.C., Stavroulakis, G.E.: Springback prediction in sheet metal forming, based on finite element analysis and artificial neural network approach. Appl. Mech. 1, 97–110 (2020)CrossRef Spathopoulos, S.C., Stavroulakis, G.E.: Springback prediction in sheet metal forming, based on finite element analysis and artificial neural network approach. Appl. Mech. 1, 97–110 (2020)CrossRef
21.
Zurück zum Zitat Drosopoulos, G.A., Wriggers, P., Stavroulakis, G.E.: A multi-scale computational method including contact for the analysis of damage in composite materials. Comput. Mater. Sci. 95, 522–535 (2014)CrossRef Drosopoulos, G.A., Wriggers, P., Stavroulakis, G.E.: A multi-scale computational method including contact for the analysis of damage in composite materials. Comput. Mater. Sci. 95, 522–535 (2014)CrossRef
22.
Zurück zum Zitat Muradova, A.D., Stavroulakis, G.E.: Physics-informed neural networks for elastic plate problems with bending and Winkler-type contact effects. J. Serbian Soc. Comput. Mech. 15(2), 45–54 (2021)CrossRef Muradova, A.D., Stavroulakis, G.E.: Physics-informed neural networks for elastic plate problems with bending and Winkler-type contact effects. J. Serbian Soc. Comput. Mech. 15(2), 45–54 (2021)CrossRef
23.
Zurück zum Zitat Lu, X., Giovanis, D.G., Yvonnet, J., Papadopoulos, V., Detrez, F., Bai, J.: A data-driven computational homogenization method based on neural networks for the nonlinear anisotropic electrical response of graphene/polymer nanocomposites. Comput. Mech. 64(2), 307–321 (2019)CrossRef Lu, X., Giovanis, D.G., Yvonnet, J., Papadopoulos, V., Detrez, F., Bai, J.: A data-driven computational homogenization method based on neural networks for the nonlinear anisotropic electrical response of graphene/polymer nanocomposites. Comput. Mech. 64(2), 307–321 (2019)CrossRef
24.
Zurück zum Zitat Tchalla, A., Belouettar, S., Makradi, A., Zahrouni, H.: An ABAQUS toolbox for multiscale finite element computation. Compos. B Eng. 52, 323–333 (2013)CrossRef Tchalla, A., Belouettar, S., Makradi, A., Zahrouni, H.: An ABAQUS toolbox for multiscale finite element computation. Compos. B Eng. 52, 323–333 (2013)CrossRef
25.
Zurück zum Zitat Wei, H., Wu, C.T, Hu, W., et al.: LS-DYNA machine learning–based multiscale method for nonlinear modeling of short fiber–reinforced composites. J. Eng. Mech., 149(3) (2023) Wei, H., Wu, C.T, Hu, W., et al.: LS-DYNA machine learning–based multiscale method for nonlinear modeling of short fiber–reinforced composites. J. Eng. Mech., 149(3) (2023)
26.
Zurück zum Zitat Su, T.-H., et al.: Multiscale computational solid mechanics: data and machine learning. J. Mech., 38, 568–585 (2022) Su, T.-H., et al.: Multiscale computational solid mechanics: data and machine learning. J. Mech., 38, 568–585 (2022)
27.
Zurück zum Zitat Fei, T., Xin, L., Haodong, D., Wenbin, Y.: Learning composite constitutive laws via coupling Abaqus and deep neural network. Compos. Struct. 272, 114137 (2021)CrossRef Fei, T., Xin, L., Haodong, D., Wenbin, Y.: Learning composite constitutive laws via coupling Abaqus and deep neural network. Compos. Struct. 272, 114137 (2021)CrossRef
29.
Zurück zum Zitat Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Comput. Methods Appl. Mech. Engrg. 304, 81–101 (2016)CrossRef Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Comput. Methods Appl. Mech. Engrg. 304, 81–101 (2016)CrossRef
30.
Zurück zum Zitat Park, H., Cho, M.: Multiscale constitutive model using data–driven yield function. Compos. B Eng. 216, 108831 (2021)CrossRef Park, H., Cho, M.: Multiscale constitutive model using data–driven yield function. Compos. B Eng. 216, 108831 (2021)CrossRef
31.
Zurück zum Zitat Tang, Z., Guo, L., et al.: A combined machine learning and numerical approach for evaluating the uncertainty of 3D angle-interlock woven composites. Compos. Struct. 294, 115726 (2022)CrossRef Tang, Z., Guo, L., et al.: A combined machine learning and numerical approach for evaluating the uncertainty of 3D angle-interlock woven composites. Compos. Struct. 294, 115726 (2022)CrossRef
32.
Zurück zum Zitat Huang, W., Xu, R., Yang, J., Huang, Q., Hu, H.: Data-driven multiscale simulation of FRP based on material twins. Compos. Struct. 256, 113013 (2021)CrossRef Huang, W., Xu, R., Yang, J., Huang, Q., Hu, H.: Data-driven multiscale simulation of FRP based on material twins. Compos. Struct. 256, 113013 (2021)CrossRef
33.
Zurück zum Zitat Provatidis, C.G., Vassiliadis, S.G., Anastasiadou, E.A.: Contact mechanics in two‐dimensional finite element modelling of fabrics. Int. J. Clothing Sci. Technol., 17(1), 29–40 (2005) Provatidis, C.G., Vassiliadis, S.G., Anastasiadou, E.A.: Contact mechanics in two‐dimensional finite element modelling of fabrics. Int. J. Clothing Sci. Technol., 17(1), 29–40 (2005)
34.
Zurück zum Zitat Kallivretaki, A., Vassiliadis, S., Blaga, M., Provatidis, C.: Finite element modelling of the warp knitted structure. Res. J. Text. Appar. 11(4), 40–47 (2007)CrossRef Kallivretaki, A., Vassiliadis, S., Blaga, M., Provatidis, C.: Finite element modelling of the warp knitted structure. Res. J. Text. Appar. 11(4), 40–47 (2007)CrossRef
35.
Zurück zum Zitat Dixit, A., Mali, H.S.: Modeling techniques for predicting the mechanical properties of woven-fabric textile composites: a review. Mech. Compos. Mater. 49, 1–20 (2013)CrossRef Dixit, A., Mali, H.S.: Modeling techniques for predicting the mechanical properties of woven-fabric textile composites: a review. Mech. Compos. Mater. 49, 1–20 (2013)CrossRef
36.
Zurück zum Zitat Brown, L.P., Long, A.C.: Modeling the geometry of textile reinforcements for composites: TexGen. In: Boisse, P. (ed.) Composite Reinforcements for Optimum Performance (Second Edition), pp. 237–265. Woodhead Publishing, 2021 (2021) Brown, L.P., Long, A.C.: Modeling the geometry of textile reinforcements for composites: TexGen. In: Boisse, P. (ed.) Composite Reinforcements for Optimum Performance (Second Edition), pp. 237–265. Woodhead Publishing, 2021 (2021)
37.
Zurück zum Zitat Stavroulakis, G.E. et al.: Data-driven, data-based and artificial intelligence methods in computational mechanics. In: CESARE’22 3rd Coordinating Engineering for Sustainability and Resillence, May 6th–May 9th, 2022, Irbid, Jordan (2022) Stavroulakis, G.E. et al.: Data-driven, data-based and artificial intelligence methods in computational mechanics. In: CESARE’22 3rd Coordinating Engineering for Sustainability and Resillence, May 6th–May 9th, 2022, Irbid, Jordan (2022)
Metadaten
Titel
Data-Driven Multi-scale Numerical Homogenization
verfasst von
Georgios E. Stavroulakis
Eleftheria Bletsogianni
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-48933-4_49

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.