Skip to main content
Erschienen in:
Buchtitelbild

2024 | OriginalPaper | Buchkapitel

1. Introduction to Fractional Calculus

verfasst von : Dingyü Xue, Lu Bai

Erschienen in: Fractional Calculus

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

At the beginning of the development of the theory of classical calculus (called integer-order calculus in this book), the British scientist Isaac Newton and the German mathematician Gottfried Wilhelm Leibniz used different symbols for different orders of derivatives. For example, Newton used the notation \(\dot{y}(x)\), \(\ddot{y}(x)\) and \(\dddot{y}(x)\), while Leibniz used the notation \(\textrm{d}^n y(x)/\textrm{d}x^n\), where n is a positive integer. A natural question is how to extend n into fractions or even complex numbers. In a letter written by the French mathematician Marquis de l’Hôpital to Leibniz in 1695, he asked question “what would be the meaning if \(n = 1/2\) in the \(\textrm{d}^n y(x)/\textrm{d}x^n\) notation”. In a letter dated 30 September 1695, Leibniz replied, “Thus it follows that \(\textrm{d}^{1/2} x\) will be equal to \(x\sqrt{\textrm{d}x:x}\). This is an apparent paradox from which, one day, useful consequences will be drawn” [1]. In this chapter, a brief historic view of fractional calculus is presented. The tools for fractional calculus are summarized.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Miller KS, Ross B (1993) An introduction to the fractional calculus and fractional differen-tial equations[M]. Wiley, New York Miller KS, Ross B (1993) An introduction to the fractional calculus and fractional differen-tial equations[M]. Wiley, New York
2.
Zurück zum Zitat Oldham KB, Spanier J (1974) The fractional calculus: theory and applications of differentiation and integration to arbitrary order[M]. Academic Press, San Diego Oldham KB, Spanier J (1974) The fractional calculus: theory and applications of differentiation and integration to arbitrary order[M]. Academic Press, San Diego
3.
Zurück zum Zitat Valério D, Machado JT, Kiryakova V (2014) Some pioneers of the applications of fractional calculus[J]. Fract Calc Appl Anal 17(2):552–578MathSciNetCrossRef Valério D, Machado JT, Kiryakova V (2014) Some pioneers of the applications of fractional calculus[J]. Fract Calc Appl Anal 17(2):552–578MathSciNetCrossRef
4.
Zurück zum Zitat Caputo M (1967) Linear models of dissipation whose \(Q\) is almost frequency independent II[J]. Geophys J Int 13(5):529–539CrossRef Caputo M (1967) Linear models of dissipation whose \(Q\) is almost frequency independent II[J]. Geophys J Int 13(5):529–539CrossRef
5.
Zurück zum Zitat Caputo M, Mainardi F (1971) A new dissipation model based on memory mechanism [J]. Pure Appl Geophys 91(8):134–147CrossRef Caputo M, Mainardi F (1971) A new dissipation model based on memory mechanism [J]. Pure Appl Geophys 91(8):134–147CrossRef
6.
Zurück zum Zitat Manabe S (1960) The non-integer integral and its application to control systems (in Japanese)[J]. Jpn J Inst Electr Eng 80:589–597 Manabe S (1960) The non-integer integral and its application to control systems (in Japanese)[J]. Jpn J Inst Electr Eng 80:589–597
7.
Zurück zum Zitat Podlubny I (1999) Fractional-order systems and PI\(^\lambda \)D\(^\mu \)-controllers[J]. IEEE Trans Autom Control 44(1):208–214MathSciNetCrossRef Podlubny I (1999) Fractional-order systems and PI\(^\lambda \)D\(^\mu \)-controllers[J]. IEEE Trans Autom Control 44(1):208–214MathSciNetCrossRef
8.
Zurück zum Zitat La Oustaloup A (1991) Commande CRONE[M]. Hermès, Paris La Oustaloup A (1991) Commande CRONE[M]. Hermès, Paris
9.
Zurück zum Zitat La Oustaloup A (1995) Dérivation non entière: théorie, synthèse et applications[M]. Hermès, Paris La Oustaloup A (1995) Dérivation non entière: théorie, synthèse et applications[M]. Hermès, Paris
10.
Zurück zum Zitat Podlubny I (1999) Fractional differential equations[M]. Academic Press, San Diego Podlubny I (1999) Fractional differential equations[M]. Academic Press, San Diego
11.
Zurück zum Zitat Hilfer R (2000) Applications of fractional calculus in physics[M]. World Scientific, SingaporeCrossRef Hilfer R (2000) Applications of fractional calculus in physics[M]. World Scientific, SingaporeCrossRef
12.
Zurück zum Zitat Magin RL (2006) Fractional calculus in bioengineering[M]. Begell House Publishers, Redding Magin RL (2006) Fractional calculus in bioengineering[M]. Begell House Publishers, Redding
13.
Zurück zum Zitat Diethelm K (2010) The analysis of fractional differential equations: an application-oriented exposition using differential operators of Caputo type[M]. Springer, New YorkCrossRef Diethelm K (2010) The analysis of fractional differential equations: an application-oriented exposition using differential operators of Caputo type[M]. Springer, New YorkCrossRef
14.
15.
Zurück zum Zitat Uchaikin VV (2013) Fractional derivatives for physicists and engineers—Volume I: background and theory[M]. Higher Education Press, Beijing Uchaikin VV (2013) Fractional derivatives for physicists and engineers—Volume I: background and theory[M]. Higher Education Press, Beijing
16.
Zurück zum Zitat Li CP, Zeng FH (2015) Numerical methods for fractional calculus. CRC Press, Boca RatonCrossRef Li CP, Zeng FH (2015) Numerical methods for fractional calculus. CRC Press, Boca RatonCrossRef
17.
Zurück zum Zitat Xue DY (2017) Fractional-order control systems—fundamentals and numerical implementations [M]. De Gruyter, BerlinCrossRef Xue DY (2017) Fractional-order control systems—fundamentals and numerical implementations [M]. De Gruyter, BerlinCrossRef
18.
Zurück zum Zitat Caponetto R, Dongola G, Fortuna L et al (2010) Fractional order systems: modeling and control applications[M]. World Scientific, Singapore Caponetto R, Dongola G, Fortuna L et al (2010) Fractional order systems: modeling and control applications[M]. World Scientific, Singapore
19.
Zurück zum Zitat Monje CA, Chen YQ, Vinagre BM et al (2010) Fractional-order systems and controls: fundamentals and applications[M]. Springer, LondonCrossRef Monje CA, Chen YQ, Vinagre BM et al (2010) Fractional-order systems and controls: fundamentals and applications[M]. Springer, LondonCrossRef
20.
Zurück zum Zitat Petráš I (2011) Fractional-order nonlinear systems: modelling, analysis and simulation[M]. Higher Education Press, BeijingCrossRef Petráš I (2011) Fractional-order nonlinear systems: modelling, analysis and simulation[M]. Higher Education Press, BeijingCrossRef
21.
Zurück zum Zitat Luo Y, Chen YQ (2012) Fractional-order motion control[M]. John Wiley & Sons, LondonCrossRef Luo Y, Chen YQ (2012) Fractional-order motion control[M]. John Wiley & Sons, LondonCrossRef
22.
Zurück zum Zitat Oustaloup A (2014) Diversity and non-integer differentiation for system dynamics[M]. Wliey, LondonCrossRef Oustaloup A (2014) Diversity and non-integer differentiation for system dynamics[M]. Wliey, LondonCrossRef
23.
Zurück zum Zitat Uchaikin VV (2013) Fractional derivatives for physicists and engineers—Volume II: applications. Higher Education Press, Beijing Uchaikin VV (2013) Fractional derivatives for physicists and engineers—Volume II: applications. Higher Education Press, Beijing
24.
Zurück zum Zitat Xue DY, Chen YQ (2004) MATLAB solutions of higher advanced applicational mathematical problems (in Chinese)[M]. Tsinghua University Press, Beijing Xue DY, Chen YQ (2004) MATLAB solutions of higher advanced applicational mathematical problems (in Chinese)[M]. Tsinghua University Press, Beijing
25.
Zurück zum Zitat Chen W, Sun HG, Li XC (2010) Fractional-order derivative-based modeling in mechanics and engineering problems (in Chinese)[M]. Science Press, Beijing Chen W, Sun HG, Li XC (2010) Fractional-order derivative-based modeling in mechanics and engineering problems (in Chinese)[M]. Science Press, Beijing
26.
Zurück zum Zitat Wang JF (2010) Control performance analysis of fractional-order systems (in Chinese)[M]. Electronic Industry Press, Beijing Wang JF (2010) Control performance analysis of fractional-order systems (in Chinese)[M]. Electronic Industry Press, Beijing
27.
Zurück zum Zitat Zhao CN, Li YS, Lu T (2011) Fractional-order system analysis and design (in Chinese)[M]. National Defense Industry Press, Beijing Zhao CN, Li YS, Lu T (2011) Fractional-order system analysis and design (in Chinese)[M]. National Defense Industry Press, Beijing
28.
Zurück zum Zitat Wang CY, Li MQ, Jiang SH et al (2014) Fractional-order control system design (in Chinese)[M]. National Defense Industry Press, Beijing Wang CY, Li MQ, Jiang SH et al (2014) Fractional-order control system design (in Chinese)[M]. National Defense Industry Press, Beijing
29.
Zurück zum Zitat Li W, Zhao HM (2014) Fractional-order controller design methods and vibration suppression performance analysis (in Chinese)[M]. Science Press, Beijing Li W, Zhao HM (2014) Fractional-order controller design methods and vibration suppression performance analysis (in Chinese)[M]. Science Press, Beijing
30.
Zurück zum Zitat Liao XZ, Gao Z (2016) Fractional-order system robustness analysis and robust control (in Chinese)[M]. Science Press, Beijing Liao XZ, Gao Z (2016) Fractional-order system robustness analysis and robust control (in Chinese)[M]. Science Press, Beijing
31.
Zurück zum Zitat Wu Q, Zhuang JH (2016) Fractional calculus (in Chinese)[M]. Tsinghua University Press, Beijing Wu Q, Zhuang JH (2016) Fractional calculus (in Chinese)[M]. Tsinghua University Press, Beijing
32.
Zurück zum Zitat Xue DY (2018) Fractional calculus and fractional-order control (in Chinese)[M]. Science Press, Beijing Xue DY (2018) Fractional calculus and fractional-order control (in Chinese)[M]. Science Press, Beijing
34.
Zurück zum Zitat Podlubny I (2001) Geometric and physical interpretations of fractional integration and differentiation[J]. Fract Calc Appl Anal 5(4):230–237MathSciNet Podlubny I (2001) Geometric and physical interpretations of fractional integration and differentiation[J]. Fract Calc Appl Anal 5(4):230–237MathSciNet
35.
Zurück zum Zitat Bagley RL, Torvik PJ (1983) Fractional calculus—a different approach to the analysis of viscoelastically damped structures[J]. AIAA J 21(5):741–748CrossRef Bagley RL, Torvik PJ (1983) Fractional calculus—a different approach to the analysis of viscoelastically damped structures[J]. AIAA J 21(5):741–748CrossRef
36.
Zurück zum Zitat Torvik PJ, Bagley RL (1984) On the appearance of the fractional derivative in the behavior of real materials[J]. Trans ASME 51(4):294–298CrossRef Torvik PJ, Bagley RL (1984) On the appearance of the fractional derivative in the behavior of real materials[J]. Trans ASME 51(4):294–298CrossRef
37.
Zurück zum Zitat Jesus IS, Tenreiro Machado JA, Barbosa RS (2010) Fractional dynamics and control of distributed parameter systems[J]. Comput Math Appl 59(5):1687–1694MathSciNetCrossRef Jesus IS, Tenreiro Machado JA, Barbosa RS (2010) Fractional dynamics and control of distributed parameter systems[J]. Comput Math Appl 59(5):1687–1694MathSciNetCrossRef
38.
Zurück zum Zitat Chua LO (1971) Memristor–the missing circuit element[J]. IEEE Trans Circuit Theory 18(5):507–519CrossRef Chua LO (1971) Memristor–the missing circuit element[J]. IEEE Trans Circuit Theory 18(5):507–519CrossRef
39.
Zurück zum Zitat Strukov DB, Snider GS, Stewart DR et al (2008) The missing memristor found[J]. Nat 453:80–83CrossRef Strukov DB, Snider GS, Stewart DR et al (2008) The missing memristor found[J]. Nat 453:80–83CrossRef
40.
Zurück zum Zitat Fouda ME, Radwan AG (2013) On the fractional-order memristor model[J]. J Fract Calc Appl 4(1):1–7 Fouda ME, Radwan AG (2013) On the fractional-order memristor model[J]. J Fract Calc Appl 4(1):1–7
41.
Zurück zum Zitat West BJ (2016) Fractional calculus view of complexity: tomorrow’s science[M]. CRC Press, Boca RatonCrossRef West BJ (2016) Fractional calculus view of complexity: tomorrow’s science[M]. CRC Press, Boca RatonCrossRef
42.
Zurück zum Zitat Vinagre BM, Chen YQ (2003) Pet\({{\acute{r}}}\)ǎs I. Two direct Tustin discretization methods for fractional-order differentiator/integrator[J]. J Frankl Inst 340(5):349–362 Vinagre BM, Chen YQ (2003) Pet\({{\acute{r}}}\)ǎs I. Two direct Tustin discretization methods for fractional-order differentiator/integrator[J]. J Frankl Inst 340(5):349–362
43.
Zurück zum Zitat Meerschaert MM, Tadjeran C (2004) Finite difference approximations for fractional advection-dispersion flow equations[J]. J Comput Appl Math 172(1):65–77MathSciNetCrossRef Meerschaert MM, Tadjeran C (2004) Finite difference approximations for fractional advection-dispersion flow equations[J]. J Comput Appl Math 172(1):65–77MathSciNetCrossRef
45.
Zurück zum Zitat Hairer E, Lubich C, Schlichte M (1985) Fast numerical solution of nonlinear Volterra convolution equations[J]. SIAM J Sci & Stat Comput 6(3):532–541MathSciNetCrossRef Hairer E, Lubich C, Schlichte M (1985) Fast numerical solution of nonlinear Volterra convolution equations[J]. SIAM J Sci & Stat Comput 6(3):532–541MathSciNetCrossRef
46.
Zurück zum Zitat Diethelm K (1997) Generalized compound quadrature formulae for finite-part integrals[J]. IMA J Numer Anal 17(3):479–493MathSciNetCrossRef Diethelm K (1997) Generalized compound quadrature formulae for finite-part integrals[J]. IMA J Numer Anal 17(3):479–493MathSciNetCrossRef
47.
Zurück zum Zitat Diethelm K, Ford NJ (2004) Multi-order fractional differential equations and their numerical solution[J]. Appl Math Comput 154(3):621–640MathSciNet Diethelm K, Ford NJ (2004) Multi-order fractional differential equations and their numerical solution[J]. Appl Math Comput 154(3):621–640MathSciNet
48.
Zurück zum Zitat Diethelm K (2008) An investigation of some nonclassical methods for the numerical approximation of Caputo-type fractional derivatives[J]. Numer Algorithms 47(4):475–490MathSciNetCrossRef Diethelm K (2008) An investigation of some nonclassical methods for the numerical approximation of Caputo-type fractional derivatives[J]. Numer Algorithms 47(4):475–490MathSciNetCrossRef
49.
Zurück zum Zitat Podlubny I (2000) Matrix approach to discrete fractional calculus[J]. Fract Calc Appl Anal 3(4):359–386MathSciNet Podlubny I (2000) Matrix approach to discrete fractional calculus[J]. Fract Calc Appl Anal 3(4):359–386MathSciNet
50.
Zurück zum Zitat Brzeziński DW, Ostalczyk P (2016) Numerical calculations accuracy comparison of the inverse Laplace transform algorithms for solutions of fractional order differential equations[J]. Nonlinear Dyn 84(1):65–77MathSciNetCrossRef Brzeziński DW, Ostalczyk P (2016) Numerical calculations accuracy comparison of the inverse Laplace transform algorithms for solutions of fractional order differential equations[J]. Nonlinear Dyn 84(1):65–77MathSciNetCrossRef
51.
Zurück zum Zitat Uddin M, Ahmad S (2017) On the numerical solution of Bagley-Torvik equation via the Laplace transform[J]. Tbil Math J 10(1):279–284MathSciNet Uddin M, Ahmad S (2017) On the numerical solution of Bagley-Torvik equation via the Laplace transform[J]. Tbil Math J 10(1):279–284MathSciNet
52.
Zurück zum Zitat Kelly JF, Mcgough RJ (2016) Approximate analytical time-domain Green’s functions for the Caputo fractional wave equation[J]. J Acoust Soc Am 140(2):1039–1047CrossRef Kelly JF, Mcgough RJ (2016) Approximate analytical time-domain Green’s functions for the Caputo fractional wave equation[J]. J Acoust Soc Am 140(2):1039–1047CrossRef
53.
Zurück zum Zitat Akram G, Rasheed R (2017) Existence and uniqueness of nonlinear multi-order fractional differential equations via Green function[J]. Int J Appl Comput Math 3:3831–3856MathSciNetCrossRef Akram G, Rasheed R (2017) Existence and uniqueness of nonlinear multi-order fractional differential equations via Green function[J]. Int J Appl Comput Math 3:3831–3856MathSciNetCrossRef
54.
Zurück zum Zitat Adomian G (1996) Solution of coupled nonlinear partial differential equations by decomposition[J]. Comput Math Appl 31(6):117–120 Adomian G (1996) Solution of coupled nonlinear partial differential equations by decomposition[J]. Comput Math Appl 31(6):117–120
55.
Zurück zum Zitat Diethelm K, Ford NJ, Freed AD (2004) Detailed error analysis for a fractional Adams method[J]. Numer Algorithms 36(1):31–52MathSciNetCrossRef Diethelm K, Ford NJ, Freed AD (2004) Detailed error analysis for a fractional Adams method[J]. Numer Algorithms 36(1):31–52MathSciNetCrossRef
56.
Zurück zum Zitat Baskonus HM, Bulut H (2015) On the numerical solutions of some fractional ordinary differential equations by fractional Adams-Bashforth-Moulton method[J]. Open Math 13(1):547–556MathSciNetCrossRef Baskonus HM, Bulut H (2015) On the numerical solutions of some fractional ordinary differential equations by fractional Adams-Bashforth-Moulton method[J]. Open Math 13(1):547–556MathSciNetCrossRef
57.
Zurück zum Zitat Diethelm K, Ford NJ, Freed AD (2002) A predictor-corrector approach for the numerical solution of fractional differential equations[J]. Nonlinear Dyn 29(1):3–22MathSciNetCrossRef Diethelm K, Ford NJ, Freed AD (2002) A predictor-corrector approach for the numerical solution of fractional differential equations[J]. Nonlinear Dyn 29(1):3–22MathSciNetCrossRef
58.
Zurück zum Zitat Diethelm K (2011) An efficient parallel algorithm for the numerical solution of fractional differential equations[J]. Fract Calc Appl Anal 14(3):475–490MathSciNetCrossRef Diethelm K (2011) An efficient parallel algorithm for the numerical solution of fractional differential equations[J]. Fract Calc Appl Anal 14(3):475–490MathSciNetCrossRef
59.
Zurück zum Zitat Diethelm K, Ford NJ (2002) Analysis of fractional differential equations[J]. J Math Anal Appl 265(2):229–248MathSciNetCrossRef Diethelm K, Ford NJ (2002) Analysis of fractional differential equations[J]. J Math Anal Appl 265(2):229–248MathSciNetCrossRef
60.
Zurück zum Zitat Zhao CN, Xue DY (2008) Closed-form solutions to fractional-order linear differential equations[J]. Front Electr Electron Eng China 3(2):214–217CrossRef Zhao CN, Xue DY (2008) Closed-form solutions to fractional-order linear differential equations[J]. Front Electr Electron Eng China 3(2):214–217CrossRef
61.
Zurück zum Zitat Bal L, Xue DY (2018) A high-precision recursive algorithm for fractional-order calculus (in Chinese)[J]. J Northeast Univ (Nat Sci Ed) 39(4):604–608 Bal L, Xue DY (2018) A high-precision recursive algorithm for fractional-order calculus (in Chinese)[J]. J Northeast Univ (Nat Sci Ed) 39(4):604–608
62.
Zurück zum Zitat Xue DY, Bai L (2017) Numerical algorithms for Caputo fractional-order differential equations[J]. Int J Control 90(6):1201–1211MathSciNetCrossRef Xue DY, Bai L (2017) Numerical algorithms for Caputo fractional-order differential equations[J]. Int J Control 90(6):1201–1211MathSciNetCrossRef
63.
Zurück zum Zitat Bai L, Xue DY (2018) Universal block diagram based modeling and simulation schemes for fractional-order control systems. ISA Trans 82:153–162CrossRef Bai L, Xue DY (2018) Universal block diagram based modeling and simulation schemes for fractional-order control systems. ISA Trans 82:153–162CrossRef
64.
Zurück zum Zitat Cao JX, Li CP, Chen YQ (2015) High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equations (II)[J]. Fract Calc Appl Anal 18(3):735–761MathSciNetCrossRef Cao JX, Li CP, Chen YQ (2015) High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equations (II)[J]. Fract Calc Appl Anal 18(3):735–761MathSciNetCrossRef
65.
Zurück zum Zitat Li HF, Cao JX, Li CP (2016) High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equations (II)[J]. J Comput Appl Math 299:159–175MathSciNetCrossRef Li HF, Cao JX, Li CP (2016) High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equations (II)[J]. J Comput Appl Math 299:159–175MathSciNetCrossRef
66.
Zurück zum Zitat Wang ZQ, Cao JY (2015) Numerical algorithms and their error analysis in fractional-order integro-differential equations (in Chinese)[M]. Xi’an Jiaotong University Press, Xi’an Wang ZQ, Cao JY (2015) Numerical algorithms and their error analysis in fractional-order integro-differential equations (in Chinese)[M]. Xi’an Jiaotong University Press, Xi’an
67.
Zurück zum Zitat Xue DY, Bai L (2017) Benchmark problems for Caputo fractional-order ordinary differential equations[J]. Fract Calc Appl Anal 20(5):1305–1312MathSciNetCrossRef Xue DY, Bai L (2017) Benchmark problems for Caputo fractional-order ordinary differential equations[J]. Fract Calc Appl Anal 20(5):1305–1312MathSciNetCrossRef
68.
Zurück zum Zitat Bai L, Xue DY (2022) Block diagram modeling and simulation for delay fractional-order differential equations[C]. In: Proceedings of Chinese Control and Decision Conference. Hefei, China, pp 137–142 Bai L, Xue DY (2022) Block diagram modeling and simulation for delay fractional-order differential equations[C]. In: Proceedings of Chinese Control and Decision Conference. Hefei, China, pp 137–142
69.
Zurück zum Zitat Liu FW, Zhuang PH, Liu QX (2015) Numerical algorithms and their applications in fractional-order partial differential equations (in Chinese)[M]. Science Press, Beijing Liu FW, Zhuang PH, Liu QX (2015) Numerical algorithms and their applications in fractional-order partial differential equations (in Chinese)[M]. Science Press, Beijing
70.
Zurück zum Zitat Sun ZZ, Gao GH (2015) Finite difference algorithms in fractional-order differential equations (in Chinese)[M]. Science Press, Beijing Sun ZZ, Gao GH (2015) Finite difference algorithms in fractional-order differential equations (in Chinese)[M]. Science Press, Beijing
71.
Zurück zum Zitat Bai L, Xue DY, Meng L (2021) A numerical algorithm for time-fractional partial differential equations (in Chinese)[J]. J Math Pract Theory 51(12):245–251 Bai L, Xue DY, Meng L (2021) A numerical algorithm for time-fractional partial differential equations (in Chinese)[J]. J Math Pract Theory 51(12):245–251
72.
Zurück zum Zitat Adomian G (1994) Solving frontier problems of physics: the decomposition method[M]. Kluwer Academic Publishers, BostonCrossRef Adomian G (1994) Solving frontier problems of physics: the decomposition method[M]. Kluwer Academic Publishers, BostonCrossRef
73.
Zurück zum Zitat Yu Q, Liu FW, Anh V et al (2008) Solving linear and non-linear space-time fractional reaction-diffusion equations by the Adomian decomposition method[J]. Int J Numer Methods Eng 74(1):138–158MathSciNetCrossRef Yu Q, Liu FW, Anh V et al (2008) Solving linear and non-linear space-time fractional reaction-diffusion equations by the Adomian decomposition method[J]. Int J Numer Methods Eng 74(1):138–158MathSciNetCrossRef
74.
Zurück zum Zitat Jafari H, Daftardar-Gejji V (2006) Solving linear and nonlinear fractional diffusion and wave equations by Adomian decomposition[J]. Appl Math Comput 180(2):488–497MathSciNet Jafari H, Daftardar-Gejji V (2006) Solving linear and nonlinear fractional diffusion and wave equations by Adomian decomposition[J]. Appl Math Comput 180(2):488–497MathSciNet
75.
Zurück zum Zitat Guo BL, Pu XK, Huang FH (2011) Fractional-order partial differential equations and their numerical solutions (in Chinese)[M]. Science Press, Beijing Guo BL, Pu XK, Huang FH (2011) Fractional-order partial differential equations and their numerical solutions (in Chinese)[M]. Science Press, Beijing
76.
Zurück zum Zitat Li Z, Liu L, Dehghan S et al (2017) A review and evaluation of numerical tools for fractional calculus and fractional order control[J]. Int J Control 90(6):1165–1181MathSciNetCrossRef Li Z, Liu L, Dehghan S et al (2017) A review and evaluation of numerical tools for fractional calculus and fractional order control[J]. Int J Control 90(6):1165–1181MathSciNetCrossRef
77.
Zurück zum Zitat Valério D (2006) Ninteger v. 2.3 fractional control toolbox for MATLAB[R]. Universudade Téchica de Lisboa Valério D (2006) Ninteger v. 2.3 fractional control toolbox for MATLAB[R]. Universudade Téchica de Lisboa
78.
Zurück zum Zitat Xue DY (2022) Computer-aided design of control systems with MATLAB (in Chinese)[M], 4th edn. Tsinghua University Press, Beijing Xue DY (2022) Computer-aided design of control systems with MATLAB (in Chinese)[M], 4th edn. Tsinghua University Press, Beijing
79.
Zurück zum Zitat Chen YQ, Petráš I, Xue DY (2009) Fractional order control—a tutorial[C]. In: Proceedings of the American Control Conference. St Louis, pp 1397–1411 Chen YQ, Petráš I, Xue DY (2009) Fractional order control—a tutorial[C]. In: Proceedings of the American Control Conference. St Louis, pp 1397–1411
80.
Zurück zum Zitat Xue DY (2019) FOTF Toolbox for fractional-order control systems. In: Petráš I (ed) Handbook of fractional calculus with applications. Volume 6: applications in control[M]. De Gruyter, Berlin Xue DY (2019) FOTF Toolbox for fractional-order control systems. In: Petráš I (ed) Handbook of fractional calculus with applications. Volume 6: applications in control[M]. De Gruyter, Berlin
81.
Zurück zum Zitat Tepljakov A (2011) Fractional-order calculus based identification and control of linear dynamic systems[D]. Tallinn University of Technology, Tallinn Tepljakov A (2011) Fractional-order calculus based identification and control of linear dynamic systems[D]. Tallinn University of Technology, Tallinn
82.
Zurück zum Zitat Tepljakov A, Petlenkov E, Belikov J (2019) FOMCON toolbox for modeling, design and implementation of fractional-order control systems. Pet\({\acute{r}}\)š. I. Handbook of fractional calculus with applications. Volume 6: applications in control[M]. De Gruyter, Berlin Tepljakov A, Petlenkov E, Belikov J (2019) FOMCON toolbox for modeling, design and implementation of fractional-order control systems. Pet\({\acute{r}}\)š. I. Handbook of fractional calculus with applications. Volume 6: applications in control[M]. De Gruyter, Berlin
Metadaten
Titel
Introduction to Fractional Calculus
verfasst von
Dingyü Xue
Lu Bai
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-2070-9_1