Skip to main content

18.05.2024 | Research Article-Mechanical Engineering

Investigation on Thermal Management of 18650 Lithium-Ion Batteries Using Nano-Enhanced Paraffin Wax: A Combined Numerical and Experimental Study

verfasst von: Dhyan Vyas, Jalaj Bhatt, Akshat Rajput, Tapano Kumar Hotta, A. Rammohan, D. R. S. Raghuraman

Erschienen in: Arabian Journal for Science and Engineering

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Lithium-ion (Li-ion) battery cells are used as the major power source for every electric vehicle (EV) industry because of their properties like density and voltage. Their optimal operating temperature ranges between 15 and 45 °C. The charge mobility and chemical reaction in Li-ion batteries cause excessive heat generation leading to thermal runaway and ultimately their capacity diminishes over the life cycle. The main idea of the present study is to control the thermal runaway of the Li-ion batteries using nano-enhanced phase change materials (Ne-PCM). Hence, there is a need for the development of a battery thermal management system (BTMS) using either air, liquid, or phase change material (PCM). An 18650 battery cell (normal capacity: 2700 mAh; rated capacity: 2600 mAh; normal voltage: 3.7 V; rated power: 9.62 Wh; anode material: lithiated graphite (LiC6); cathode material: lithium-nickel-manganese-cobalt-oxide (LiNiMnCoO2); electrolyte material: lithium hexafluorophosphate (LiPF6)) along with a complete battery pack (4 cells) is considered in the present study. Transient numerical simulations (using both MATLAB R2022a and ANSYS 2020 R2) are carried out with and without using the paraffin wax. Three different nanoparticles (copper oxide (CuO), aluminum oxide (Al2O3), and titanium oxide (TiO2)) at various concentrations (0%, 3%, 7%, and 10%) are added to the paraffin wax to enhance their thermal conductivity value. However, the experiments are conducted only with and without using the paraffin wax, but not with the nano-enhanced paraffin wax. Hence, this (Ne-PCM case) acts only as a support to the numerical study. For both the numerical and experimental analysis, the temperature and voltage characteristics of the battery packs are measured for a specific time to understand their charging and discharging characteristics. It is found that paraffin wax is a better candidate for maintaining the battery temperature in an optimal range when the battery generates excess heat. Paraffin wax gives a 41% increase in battery life compared to air cooling. The hybrid cooling (combination of paraffin wax and air) technique reduces the battery temperature rise by 4 °C compared to only paraffin wax and by 8 °C compared to only air cooling.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D.: Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4(9), 3243–3262 (2011)CrossRef Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D.: Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4(9), 3243–3262 (2011)CrossRef
2.
Zurück zum Zitat Liu, Y.; Liao, Y.G.; Lai, M.C.: Transient temperature distributions on lithium-ion polymer SLI battery. Vehicles 1(1), 127–137 (2019)CrossRef Liu, Y.; Liao, Y.G.; Lai, M.C.: Transient temperature distributions on lithium-ion polymer SLI battery. Vehicles 1(1), 127–137 (2019)CrossRef
3.
Zurück zum Zitat Kim, U.S.; Yi, J.; Shin, C.B.; Han, T.; Park, S.: Modeling the dependence of the discharge behavior of a lithium-ion battery on the environmental temperature. J. Electrochem. Soc. 158(5), A611 (2011)CrossRef Kim, U.S.; Yi, J.; Shin, C.B.; Han, T.; Park, S.: Modeling the dependence of the discharge behavior of a lithium-ion battery on the environmental temperature. J. Electrochem. Soc. 158(5), A611 (2011)CrossRef
4.
Zurück zum Zitat Ma, S.; Jiang, M.; Tao, P.; Song, C.; Wu, J.; Wang, J.; Deng, T.; Shang, W.: Temperature effect and thermal impact in lithium-ion batteries: A review. Progr. Nat. Sci. Mater. Int. 28(6), 653–666 (2018)CrossRef Ma, S.; Jiang, M.; Tao, P.; Song, C.; Wu, J.; Wang, J.; Deng, T.; Shang, W.: Temperature effect and thermal impact in lithium-ion batteries: A review. Progr. Nat. Sci. Mater. Int. 28(6), 653–666 (2018)CrossRef
5.
Zurück zum Zitat Anselma, P.G.; Kollmeyer, P.; Lempert, J.; Zhao, Z.; Belingardi, G.; Emadi, A.: Battery state-of-health sensitive energy management of hybrid electric vehicles: lifetime prediction and ageing experimental validation. Appl. Energy 285, 116440 (2021)CrossRef Anselma, P.G.; Kollmeyer, P.; Lempert, J.; Zhao, Z.; Belingardi, G.; Emadi, A.: Battery state-of-health sensitive energy management of hybrid electric vehicles: lifetime prediction and ageing experimental validation. Appl. Energy 285, 116440 (2021)CrossRef
6.
Zurück zum Zitat Singh, L.K.; Mishra, G.; Sharma, A.K.; Gupta, A.K.: A numerical study on thermal management of a lithium-ion battery module via forced-convective air cooling. Int. J. Refrig. 131, 218–234 (2021)CrossRef Singh, L.K.; Mishra, G.; Sharma, A.K.; Gupta, A.K.: A numerical study on thermal management of a lithium-ion battery module via forced-convective air cooling. Int. J. Refrig. 131, 218–234 (2021)CrossRef
7.
Zurück zum Zitat Liu, C.; Xu, D.; Weng, J.; Zhou, S.; Li, W.; Wan, Y.; Jiang, S.; Zhou, D.; Wang, J.; Huang, Q.: Phase change materials application in battery thermal management system: a review. Materials 13(20), 4622 (2020)CrossRef Liu, C.; Xu, D.; Weng, J.; Zhou, S.; Li, W.; Wan, Y.; Jiang, S.; Zhou, D.; Wang, J.; Huang, Q.: Phase change materials application in battery thermal management system: a review. Materials 13(20), 4622 (2020)CrossRef
8.
Zurück zum Zitat Shahjalal, M.; Shams, T.; Islam, E.; Alam, W.; Modak, M.; Bin, S.; Ramadesigan, V.; Ahmed, R.; Ahmed, H.; Iqbal, A.: A review of thermal management for Li-ion batteries: prospects, challenges, and issues. J. Energy Storage 39, 102518 (2021)CrossRef Shahjalal, M.; Shams, T.; Islam, E.; Alam, W.; Modak, M.; Bin, S.; Ramadesigan, V.; Ahmed, R.; Ahmed, H.; Iqbal, A.: A review of thermal management for Li-ion batteries: prospects, challenges, and issues. J. Energy Storage 39, 102518 (2021)CrossRef
9.
Zurück zum Zitat Liu, C.; Xu, D.; Weng, J.; Zhou, S.; Li, W.; Wan, Y.; Jiang, S.; Zhou, D.; Wang, J.; Huang, Q.: Phase change materials application in battery thermal management system: a review. Materials 13, 1–37 (2020) Liu, C.; Xu, D.; Weng, J.; Zhou, S.; Li, W.; Wan, Y.; Jiang, S.; Zhou, D.; Wang, J.; Huang, Q.: Phase change materials application in battery thermal management system: a review. Materials 13, 1–37 (2020)
10.
Zurück zum Zitat Bianco, N.; Caliano, M.; Fragnito, A.; Iasiello, M.; Mauro, G.M.; Mongibello, L.: Thermal analysis of micro-encapsulated phase change material (MEPCM)-based units integrated into a commercial water tank for cold thermal energy storage. Energy 266, 126479 (2023)CrossRef Bianco, N.; Caliano, M.; Fragnito, A.; Iasiello, M.; Mauro, G.M.; Mongibello, L.: Thermal analysis of micro-encapsulated phase change material (MEPCM)-based units integrated into a commercial water tank for cold thermal energy storage. Energy 266, 126479 (2023)CrossRef
11.
Zurück zum Zitat NematpourKeshteli, A.; Iasiello, M.; Langella, G.; Bianco, N.: Thermal enhancement techniques for a lobed-double pipe PCM thermal storage system. Appl. Therm. Eng. 233, 121139 (2023)CrossRef NematpourKeshteli, A.; Iasiello, M.; Langella, G.; Bianco, N.: Thermal enhancement techniques for a lobed-double pipe PCM thermal storage system. Appl. Therm. Eng. 233, 121139 (2023)CrossRef
12.
Zurück zum Zitat Jalil, J.M.; Mahdi, H.S.; Allawy, A.S.: Cooling performance investigation of PCM integrated into heat sink with Nano-particles addition. J. Energy Storage 55, 105466 (2022)CrossRef Jalil, J.M.; Mahdi, H.S.; Allawy, A.S.: Cooling performance investigation of PCM integrated into heat sink with Nano-particles addition. J. Energy Storage 55, 105466 (2022)CrossRef
13.
Zurück zum Zitat El Idi, M.M.; Karkri, M.; Tankari, M.A.: A passive thermal management system of Li-ion batteries using PCM composites: experimental and numerical investigations. Int. J. Heat Mass Transf. 169, 120894 (2021)CrossRef El Idi, M.M.; Karkri, M.; Tankari, M.A.: A passive thermal management system of Li-ion batteries using PCM composites: experimental and numerical investigations. Int. J. Heat Mass Transf. 169, 120894 (2021)CrossRef
14.
Zurück zum Zitat Choudhari, V.G.; Dhoble, A.S.; Panchal, S.: Numerical analysis of different fin structures in phase change material module for battery thermal management system and its optimization. Int. J. Heat Mass Transf. 163, 120434 (2020)CrossRef Choudhari, V.G.; Dhoble, A.S.; Panchal, S.: Numerical analysis of different fin structures in phase change material module for battery thermal management system and its optimization. Int. J. Heat Mass Transf. 163, 120434 (2020)CrossRef
15.
Zurück zum Zitat Wang, Z.; Li, X.; Zhang, G.; Lv, Y.; Wang, C.; He, F.; Yang, C.; Yang, C.: Thermal management investigation for lithium-ion battery module with different phase change materials. RSC Adv. 7(68), 42909–42918 (2017)CrossRef Wang, Z.; Li, X.; Zhang, G.; Lv, Y.; Wang, C.; He, F.; Yang, C.; Yang, C.: Thermal management investigation for lithium-ion battery module with different phase change materials. RSC Adv. 7(68), 42909–42918 (2017)CrossRef
16.
Zurück zum Zitat Bibin, C.; Vijayaram, M.; Suriya, V.; Ganesh, R.S.; Soundarraj, S.: A review on thermal issues in Li-ion battery and recent advancements in battery thermal management system. Mater. Today Proc. 33, 116–128 (2020)CrossRef Bibin, C.; Vijayaram, M.; Suriya, V.; Ganesh, R.S.; Soundarraj, S.: A review on thermal issues in Li-ion battery and recent advancements in battery thermal management system. Mater. Today Proc. 33, 116–128 (2020)CrossRef
17.
Zurück zum Zitat Lain, M.J.; Kendrick, E.: Understanding the limitations of lithium ion batteries at high rates. J. Power. Sources 493, 229690 (2021)CrossRef Lain, M.J.; Kendrick, E.: Understanding the limitations of lithium ion batteries at high rates. J. Power. Sources 493, 229690 (2021)CrossRef
18.
Zurück zum Zitat Chen, Y.; Kang, Y.; Zhao, Y.; Wang, L.; Liu, J.; Li, Y.; Liang, Z.; He, X.; Li, X.; Tavajohi, N.; Li, B.: A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards. J. Energy Chem. 59, 83–99 (2021)CrossRef Chen, Y.; Kang, Y.; Zhao, Y.; Wang, L.; Liu, J.; Li, Y.; Liang, Z.; He, X.; Li, X.; Tavajohi, N.; Li, B.: A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards. J. Energy Chem. 59, 83–99 (2021)CrossRef
19.
Zurück zum Zitat Afzal, A.; Mohammed Samee, A.D.; Abdul Razak, R.K.; Ramis, M.K.: Effect of spacing on thermal performance characteristics of Li-ion battery cells. J. Therm. Anal. Calorim. 135(3), 1797–1811 (2019)CrossRef Afzal, A.; Mohammed Samee, A.D.; Abdul Razak, R.K.; Ramis, M.K.: Effect of spacing on thermal performance characteristics of Li-ion battery cells. J. Therm. Anal. Calorim. 135(3), 1797–1811 (2019)CrossRef
20.
Zurück zum Zitat Talele, V.; Patil, M.S.; Panchal, S.; Fraser, R.; Fowler, M.: Battery thermal runaway propagation time delay strategy using phase change material integrated with pyro block lining: dual functionality battery thermal design. J. Energy Storage 65, 107253 (2023)CrossRef Talele, V.; Patil, M.S.; Panchal, S.; Fraser, R.; Fowler, M.: Battery thermal runaway propagation time delay strategy using phase change material integrated with pyro block lining: dual functionality battery thermal design. J. Energy Storage 65, 107253 (2023)CrossRef
21.
Zurück zum Zitat Joshi, A.K.; Dandotiya, D.; Ramesh, C.S.; Panchal, S.: Numerical analysis of battery thermal management system using passive cooling technique (No. 2023-01-0990). SAE Technical Paper (2023) Joshi, A.K.; Dandotiya, D.; Ramesh, C.S.; Panchal, S.: Numerical analysis of battery thermal management system using passive cooling technique (No. 2023-01-0990). SAE Technical Paper (2023)
22.
Zurück zum Zitat Thakur, A.K.; Sathyamurthy, R.; Velraj, R.; Saidur, R.; Pandey, A.K.; Ma, Z.; Singh, P.; Hazra, S.K.; Sharshir, S.W.; Prabakaran, R.; Kim, S.C.: A state-of-the-art review on advancing battery thermal management systems for fast charging. Appl. Therm. Eng. 226, 120303 (2023)CrossRef Thakur, A.K.; Sathyamurthy, R.; Velraj, R.; Saidur, R.; Pandey, A.K.; Ma, Z.; Singh, P.; Hazra, S.K.; Sharshir, S.W.; Prabakaran, R.; Kim, S.C.: A state-of-the-art review on advancing battery thermal management systems for fast charging. Appl. Therm. Eng. 226, 120303 (2023)CrossRef
23.
Zurück zum Zitat Choudhari, V.; Dhoble, A.S.; Panchal, S.; Fowler, D.M.; Fraser, D.R.: Experimental and numerical investigation on thermal characteristics of 2× 3 designed battery module. Available at SSRN 4367193. (2023) Choudhari, V.; Dhoble, A.S.; Panchal, S.; Fowler, D.M.; Fraser, D.R.: Experimental and numerical investigation on thermal characteristics of 2× 3 designed battery module. Available at SSRN 4367193. (2023)
24.
Zurück zum Zitat Zhang, X.; Li, Z.; Luo, L.; Fan, Y.; Du, Z.: A review on thermal management of lithium-ion batteries for electric vehicles. Energy 238, 121652 (2022)CrossRef Zhang, X.; Li, Z.; Luo, L.; Fan, Y.; Du, Z.: A review on thermal management of lithium-ion batteries for electric vehicles. Energy 238, 121652 (2022)CrossRef
25.
Zurück zum Zitat Wang, Q.; Jiang, B.; Li, B.; Yan, Y.: A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles. Renew. Sustain. Energy Rev. 64, 106–128 (2016)CrossRef Wang, Q.; Jiang, B.; Li, B.; Yan, Y.: A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles. Renew. Sustain. Energy Rev. 64, 106–128 (2016)CrossRef
26.
Zurück zum Zitat Jilte, R.; Afzal, A.; Panchal, S.: A novel battery thermal management system using nano-enhanced phase change materials. Energy 219, 119564 (2021)CrossRef Jilte, R.; Afzal, A.; Panchal, S.: A novel battery thermal management system using nano-enhanced phase change materials. Energy 219, 119564 (2021)CrossRef
27.
Zurück zum Zitat Sutheesh, P.M.; Nichit, R.B.; Rohinikumar, B.: Numerical investigation of thermal management of lithium ion battery pack with nano-enhanced phase change material and heat pipe. J. Energy Storage 77, 109972 (2024)CrossRef Sutheesh, P.M.; Nichit, R.B.; Rohinikumar, B.: Numerical investigation of thermal management of lithium ion battery pack with nano-enhanced phase change material and heat pipe. J. Energy Storage 77, 109972 (2024)CrossRef
28.
Zurück zum Zitat Zare, P.; Perera, N.; Lahr, J.; Hasan, R.: A novel thermal management system for cylindrical lithium-ion batteries using internal-external fin-enhanced phase change material. Appl. Therm. Eng. 238, 121985 (2024)CrossRef Zare, P.; Perera, N.; Lahr, J.; Hasan, R.: A novel thermal management system for cylindrical lithium-ion batteries using internal-external fin-enhanced phase change material. Appl. Therm. Eng. 238, 121985 (2024)CrossRef
29.
Zurück zum Zitat Chen, G.; Shi, Y.; Ye, H.; Kang, H.: Experimental study on phase change material-based thermal management design with adjustable fins for lithium-ion battery. Appl. Therm. Eng. 221, 119808 (2023)CrossRef Chen, G.; Shi, Y.; Ye, H.; Kang, H.: Experimental study on phase change material-based thermal management design with adjustable fins for lithium-ion battery. Appl. Therm. Eng. 221, 119808 (2023)CrossRef
30.
Zurück zum Zitat Rahman, M.; Hamja, A.; Chowdhury, H.N.; Phase change materials: Characteristics and encapsulation. In International Conference on Mechanical Engineering and Renewable Energy (ICMERE), Chittagong, Bangladesh (2013) Rahman, M.; Hamja, A.; Chowdhury, H.N.; Phase change materials: Characteristics and encapsulation. In International Conference on Mechanical Engineering and Renewable Energy (ICMERE), Chittagong, Bangladesh (2013)
31.
Zurück zum Zitat Farid, M.M.; Khudhair, A.M.; Razack, S.A.K.; Al-Hallaj, S.: A review on phase change energy storage: materials and applications. Energy Convers. Manage. 45(9–10), 1597–1615 (2004)CrossRef Farid, M.M.; Khudhair, A.M.; Razack, S.A.K.; Al-Hallaj, S.: A review on phase change energy storage: materials and applications. Energy Convers. Manage. 45(9–10), 1597–1615 (2004)CrossRef
32.
Zurück zum Zitat Kousksou, T.; Jamil, A.; El Rhafiki, T.; Zeraouli, Y.: Paraffin wax mixtures as phase change materials. Sol. Energy Mater. Sol. Cells 94(12), 2158–2165 (2010)CrossRef Kousksou, T.; Jamil, A.; El Rhafiki, T.; Zeraouli, Y.: Paraffin wax mixtures as phase change materials. Sol. Energy Mater. Sol. Cells 94(12), 2158–2165 (2010)CrossRef
33.
Zurück zum Zitat Sharma, A.; Tyagi, V.V.; Chen, C.R.; Buddhi, D.: Review on thermal energy storage with phase change materials and applications. Renew. Sustain. Energy Rev. 13(2), 318–345 (2009)CrossRef Sharma, A.; Tyagi, V.V.; Chen, C.R.; Buddhi, D.: Review on thermal energy storage with phase change materials and applications. Renew. Sustain. Energy Rev. 13(2), 318–345 (2009)CrossRef
34.
Zurück zum Zitat Vakhshouri, A.R.: Paraffin as phase change material. In Paraffin Overview, pp.1–23 (2020) Vakhshouri, A.R.: Paraffin as phase change material. In Paraffin Overview, pp.1–23 (2020)
35.
Zurück zum Zitat Grimonia, E.; Andhika, M.R.C.; Aulady, M.F.N.; Rubi, R.V.C.; Hamidah, N.L.: November. Thermal management system using phase change material for lithium-ion battery. In Journal of Physics: Conference Series, Vol. 2117, No. 1, p. 012005. IOP (2021) Grimonia, E.; Andhika, M.R.C.; Aulady, M.F.N.; Rubi, R.V.C.; Hamidah, N.L.: November. Thermal management system using phase change material for lithium-ion battery. In Journal of Physics: Conference Series, Vol. 2117, No. 1, p. 012005. IOP (2021)
36.
Zurück zum Zitat Arshad, A.; Jabbal, M.; Shi, L.; Darkwa, J.; Weston, N.J.; Yan, Y.: Development of TiO2/RT–35HC-based nanocomposite phase change materials (NCPCMs) for thermal management applications. Sustain. Energy Technol. Assess. 43, 100865 (2021) Arshad, A.; Jabbal, M.; Shi, L.; Darkwa, J.; Weston, N.J.; Yan, Y.: Development of TiO2/RT–35HC-based nanocomposite phase change materials (NCPCMs) for thermal management applications. Sustain. Energy Technol. Assess. 43, 100865 (2021)
37.
Zurück zum Zitat Sharma, S.; Micheli, L.; Chang, W.; Tahir, A.A.; Reddy, K.S.; Mallick, T.K.: Nano-enhanced phase change material for thermal management of BICPV. Appl. Energy 208, 719–733 (2017)CrossRef Sharma, S.; Micheli, L.; Chang, W.; Tahir, A.A.; Reddy, K.S.; Mallick, T.K.: Nano-enhanced phase change material for thermal management of BICPV. Appl. Energy 208, 719–733 (2017)CrossRef
38.
Zurück zum Zitat Amin, M.; Afriyanti, F.; Putra, N.: Thermal properties of paraffin based nano-phase change material as thermal energy storage. In IOP Conference Series: Earth and Environmental Science, vol. 105, p. 012028. IOP Publishing (2018) Amin, M.; Afriyanti, F.; Putra, N.: Thermal properties of paraffin based nano-phase change material as thermal energy storage. In IOP Conference Series: Earth and Environmental Science, vol. 105, p. 012028. IOP Publishing (2018)
39.
Zurück zum Zitat Brent, A.D.; Voller, V.R.; Reid, K.T.J.: Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal. Numer. Heat Transf. Part A Appl. 13(3), 297–318 (1988) Brent, A.D.; Voller, V.R.; Reid, K.T.J.: Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal. Numer. Heat Transf. Part A Appl. 13(3), 297–318 (1988)
40.
Zurück zum Zitat Venkateshan, S.P.: Mechanical Measurements. Anne Books, New Delhi (2008) Venkateshan, S.P.: Mechanical Measurements. Anne Books, New Delhi (2008)
Metadaten
Titel
Investigation on Thermal Management of 18650 Lithium-Ion Batteries Using Nano-Enhanced Paraffin Wax: A Combined Numerical and Experimental Study
verfasst von
Dhyan Vyas
Jalaj Bhatt
Akshat Rajput
Tapano Kumar Hotta
A. Rammohan
D. R. S. Raghuraman
Publikationsdatum
18.05.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Arabian Journal for Science and Engineering
Print ISSN: 2193-567X
Elektronische ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-024-09122-2

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.