Skip to main content

2024 | OriginalPaper | Buchkapitel

6. Modeling and Theoretical Studies on Beamed-Induced Plasma

verfasst von : Masayuki Takahashi, Yusuke Nakamura

Erschienen in: Beamed-mobility Engineering

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Modeling and theory for millimeter-wave discharge were described to understand the plasma-formation physics at over- and under-critical intensities. On overcritical discharge, plasma fluid or particle model was combined with electromagnetic wave propagations via a current-density feedback. Simulation results and theory indicated that electron-impact ionization, electron diffusion, and wave reflection caused the propagation of the ionization front. On the other hand, at under-critical conditions, modeling studies revealed that neutral gas dynamics, excitation reaction, and photon transport played important roles on the propagation of the ionization front.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Beouf JP, Chaudhury B, Zhu GQ (2010) Theory and modeling of self-organization and propagation of filamentary plasma arrays in microwave breakdown at atmospheric pressure. Phys Rev Lett 104:015002CrossRef Beouf JP, Chaudhury B, Zhu GQ (2010) Theory and modeling of self-organization and propagation of filamentary plasma arrays in microwave breakdown at atmospheric pressure. Phys Rev Lett 104:015002CrossRef
Zurück zum Zitat Boeuf JP, Chaudhury B, Zhu GQ (2010) Theory and modeling of self-organization and propagation of filamentary plasma arrays in microwave breakdown at atmospheric pressure. Phys Reavies Lett 104:015002CrossRef Boeuf JP, Chaudhury B, Zhu GQ (2010) Theory and modeling of self-organization and propagation of filamentary plasma arrays in microwave breakdown at atmospheric pressure. Phys Reavies Lett 104:015002CrossRef
Zurück zum Zitat Boris, J. P. (1970). Relativistic plasma simulation-optimization of a hybrid code. Proc. 4th Conf. Numerical Sim. Plasmas, pp. 3–67 Boris, J. P. (1970). Relativistic plasma simulation-optimization of a hybrid code. Proc. 4th Conf. Numerical Sim. Plasmas, pp. 3–67
Zurück zum Zitat Chaudhury B, Boeuf JP, Zhu GQ, Pascal O (2011) Physics and modelling of microwave streamers at atmospheric pressure. J Appl Phys 110:11306CrossRef Chaudhury B, Boeuf JP, Zhu GQ, Pascal O (2011) Physics and modelling of microwave streamers at atmospheric pressure. J Appl Phys 110:11306CrossRef
Zurück zum Zitat Ebert U, van Saarloos W, Caroli C (1996) Streamer propagation as a pattern formation problem. Phys Rev Lett 77:4178CrossRef Ebert U, van Saarloos W, Caroli C (1996) Streamer propagation as a pattern formation problem. Phys Rev Lett 77:4178CrossRef
Zurück zum Zitat Ebert U, van Saarloos W, Caroli C (1997a) Propagation and structure of planer streamer fronts. Phys Rev E 55:1530CrossRef Ebert U, van Saarloos W, Caroli C (1997a) Propagation and structure of planer streamer fronts. Phys Rev E 55:1530CrossRef
Zurück zum Zitat Ebert U, Saarloos W, Caroli C (1997b) Propagation and structure of planar streamer front. Physical Reaview E 55(2):1530CrossRef Ebert U, Saarloos W, Caroli C (1997b) Propagation and structure of planar streamer front. Physical Reaview E 55(2):1530CrossRef
Zurück zum Zitat Fukunari M, Tanaka S, Shinbayashi R, Yamaguchi Y, Tatematsu Y, Saito T (2019) Observation of a comb-shaped filamentary plasma array under subcritical condition in 303-GHz millimetre-wave air discharge. Sci Rep 9:17972CrossRef Fukunari M, Tanaka S, Shinbayashi R, Yamaguchi Y, Tatematsu Y, Saito T (2019) Observation of a comb-shaped filamentary plasma array under subcritical condition in 303-GHz millimetre-wave air discharge. Sci Rep 9:17972CrossRef
Zurück zum Zitat Hagelaar GJM, Pitchford LC (2005) Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models. Plasma Sources Sci Technol 14(4):722CrossRef Hagelaar GJM, Pitchford LC (2005) Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models. Plasma Sources Sci Technol 14(4):722CrossRef
Zurück zum Zitat Hidaka Y, Choi EM, Mastovsky I, Shapiro MA, Sirigiri JR, Temkin RJ (2008) Observation of large arrays of plasma filaments in Air breakdown by 1.5-MW 110-GHz gyrotron pulses. Phys Rev Lett 100:035003CrossRef Hidaka Y, Choi EM, Mastovsky I, Shapiro MA, Sirigiri JR, Temkin RJ (2008) Observation of large arrays of plasma filaments in Air breakdown by 1.5-MW 110-GHz gyrotron pulses. Phys Rev Lett 100:035003CrossRef
Zurück zum Zitat Hidaka Y, Choi EM, Mastovsky I, Shapiro MA, Sirigiri JR, Temkin RJ, Edmiston CF, Neuber AA, Oda Y (2009) Plasma structures observed in gas breakdown using a 1.5 MW, 110 GHz pulsed gyrotron. Phys Plasmas 16:055702CrossRef Hidaka Y, Choi EM, Mastovsky I, Shapiro MA, Sirigiri JR, Temkin RJ, Edmiston CF, Neuber AA, Oda Y (2009) Plasma structures observed in gas breakdown using a 1.5 MW, 110 GHz pulsed gyrotron. Phys Plasmas 16:055702CrossRef
Zurück zum Zitat Huffman RE, Tanaka Y, Larrabee JC (1963) Absorption coefficients of nitrogen in the 1000-580 Å wavelength region. J Chem Phys 39:910CrossRef Huffman RE, Tanaka Y, Larrabee JC (1963) Absorption coefficients of nitrogen in the 1000-580 Å wavelength region. J Chem Phys 39:910CrossRef
Zurück zum Zitat Kourtzanidis K, Boeuf JP, Rogier F (2014) Three-dimensional simulations of pattern formation during high-pressure, freely localized microwave breakdown in air. Phys Plasmas 21:123513CrossRef Kourtzanidis K, Boeuf JP, Rogier F (2014) Three-dimensional simulations of pattern formation during high-pressure, freely localized microwave breakdown in air. Phys Plasmas 21:123513CrossRef
Zurück zum Zitat Lieberman MA, Lichtenberg AJ (2005) Principles of plasma discharges and materials processing. WileyCrossRef Lieberman MA, Lichtenberg AJ (2005) Principles of plasma discharges and materials processing. WileyCrossRef
Zurück zum Zitat MacDonald AD (1966) Microwave breakdown in gases. Wiley MacDonald AD (1966) Microwave breakdown in gases. Wiley
Zurück zum Zitat Nakamura Y, Komurasaki K (2020) Theory and modeling of under-critical millimeter-wave discharge in atmospheric air induced by high-energy excited neutral-particles carried via photons. Plasma Sources Sci Technol 29(10):105017CrossRef Nakamura Y, Komurasaki K (2020) Theory and modeling of under-critical millimeter-wave discharge in atmospheric air induced by high-energy excited neutral-particles carried via photons. Plasma Sources Sci Technol 29(10):105017CrossRef
Zurück zum Zitat Nakamura Y, Komurasaki K, Fukunari M, Koizumi H (2018) Numerical analysis of plasma structure observed in atmospheric millimeter-wave discharge at under-critical intensity. J Appl Phys 124:033303CrossRef Nakamura Y, Komurasaki K, Fukunari M, Koizumi H (2018) Numerical analysis of plasma structure observed in atmospheric millimeter-wave discharge at under-critical intensity. J Appl Phys 124:033303CrossRef
Zurück zum Zitat Nam SK, Verboncoeur JP (2009) Theory of filamentary plasma array formation in microwave breakdown at near-atmospheric pressure. Phys Rev Lett 103:055004CrossRef Nam SK, Verboncoeur JP (2009) Theory of filamentary plasma array formation in microwave breakdown at near-atmospheric pressure. Phys Rev Lett 103:055004CrossRef
Zurück zum Zitat Nanbu K (1980) Direct simulation scheme derived from the Boltzmann equation. I. Monocomponent gases. J Phys Soc Jpn 49:2042–2049CrossRef Nanbu K (1980) Direct simulation scheme derived from the Boltzmann equation. I. Monocomponent gases. J Phys Soc Jpn 49:2042–2049CrossRef
Zurück zum Zitat Oda Y, Komurasaki K, Takahashi K, Kasugai A, Sahamoto K (2006) Plasma generation using high-power millimeter-wave beam and its application for thrust generation. J Appl Phys 100:113307CrossRef Oda Y, Komurasaki K, Takahashi K, Kasugai A, Sahamoto K (2006) Plasma generation using high-power millimeter-wave beam and its application for thrust generation. J Appl Phys 100:113307CrossRef
Zurück zum Zitat Pancheshnyi S, Biagi S, Bordage MC, Hagelaar GJ, Morgan WL, Phelps AV, Pitchford LC (2012) The LXCat project: electron scattering cross sections and swarm parameters for low temperature plasma modeling. Chem Phys 398:148CrossRef Pancheshnyi S, Biagi S, Bordage MC, Hagelaar GJ, Morgan WL, Phelps AV, Pitchford LC (2012) The LXCat project: electron scattering cross sections and swarm parameters for low temperature plasma modeling. Chem Phys 398:148CrossRef
Zurück zum Zitat Takahashi M, Ohnishi N (2014) Computational studies for plasma filamentation by magnetic field in an atmospheric microwave discharge. Appl Phys Lett 105:223504CrossRef Takahashi M, Ohnishi N (2014) Computational studies for plasma filamentation by magnetic field in an atmospheric microwave discharge. Appl Phys Lett 105:223504CrossRef
Zurück zum Zitat Takahashi M, Ohnishi N (2016) Plasma filamentation and shock wave enhancement in microwave rockets by combining low-frequency microwaves with an external magnetic field. J Appl Phys 120:063303CrossRef Takahashi M, Ohnishi N (2016) Plasma filamentation and shock wave enhancement in microwave rockets by combining low-frequency microwaves with an external magnetic field. J Appl Phys 120:063303CrossRef
Zurück zum Zitat Takahashi M, Ohnishi N (2018) Gas-species-dependence of microwave plasma propagation under external magnetic field. J Appl Phys 124:173301CrossRef Takahashi M, Ohnishi N (2018) Gas-species-dependence of microwave plasma propagation under external magnetic field. J Appl Phys 124:173301CrossRef
Zurück zum Zitat Takahashi M, Kageyama Y, Ohnishi N (2017) Joule-heating-supported plasma filamentation and branching during subcritical microwave irradiation. AIP Adv 7:055206CrossRef Takahashi M, Kageyama Y, Ohnishi N (2017) Joule-heating-supported plasma filamentation and branching during subcritical microwave irradiation. AIP Adv 7:055206CrossRef
Zurück zum Zitat Wu CYR, Fung H, Chang K, Singh TS, Mu X, Nee JB, Judge DL (2007) Fluorescence excitation spectra of the 𝑏1𝛱𝑢, 𝑏’1𝛴𝑢+, 𝑐𝑛1𝛱𝑢, and 𝑐’𝑛1𝛴𝑢+ states of in N2 the 80-100 nm region. J Chem Phys 127:084314 Wu CYR, Fung H, Chang K, Singh TS, Mu X, Nee JB, Judge DL (2007) Fluorescence excitation spectra of the 𝑏1𝛱𝑢, 𝑏’1𝛴𝑢+, 𝑐𝑛1𝛱𝑢, and 𝑐’𝑛1𝛴𝑢+ states of in N2 the 80-100 nm region. J Chem Phys 127:084314
Zurück zum Zitat Yamaguchi T, Fukunari M, Nakamura Y, Oda Y, Sakamoto K, Komurasaki K (2016) Fast-framing observation of filamentary plasma in atmospheric millimeter-wave breakdown. Front Appl Plasma Technol 9(2):79 Yamaguchi T, Fukunari M, Nakamura Y, Oda Y, Sakamoto K, Komurasaki K (2016) Fast-framing observation of filamentary plasma in atmospheric millimeter-wave breakdown. Front Appl Plasma Technol 9(2):79
Zurück zum Zitat Zh T (2001) Esirkepov.: exact charge conservation scheme for particle-in-cell simulation with an arbitrary form-factor. Comput Phys Commun 135:144–153CrossRef Zh T (2001) Esirkepov.: exact charge conservation scheme for particle-in-cell simulation with an arbitrary form-factor. Comput Phys Commun 135:144–153CrossRef
Metadaten
Titel
Modeling and Theoretical Studies on Beamed-Induced Plasma
verfasst von
Masayuki Takahashi
Yusuke Nakamura
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-4618-1_6