Skip to main content

2021 | OriginalPaper | Buchkapitel

Nonlinear Mode Decomposition and Reduced-Order Modeling for Three-Dimensional Cylinder Flow by Distributed Learning on Fugaku

verfasst von : Kazuto Ando, Keiji Onishi, Rahul Bale, Makoto Tsubokura, Akiyoshi Kuroda, Kazuo Minami

Erschienen in: High Performance Computing

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nonlinear modes of the three-dimensional flow field around a cylinder were extracted by distributed learning on Fugaku. Mode decomposition is an approach used to decompose flow fields into physically important flow structures known as modes. In this study, convolutional neural network-based mode decomposition was applied to the three-dimensional flow field. However, because this process is costly in terms of calculation and memory usage for even a small flow field problem, the enormous computational and memory resources of the supercomputer Fugaku were employed. A hybrid parallelism method combining the distribution of network structure (model parallelism) and the input data (data parallelism) using up to 10,500 nodes on Fugaku was employed for learning. Further, we constructed a reduced-order model to predict the time evolution of latent vector, using the long short-term memory networks. Finally, we compared the reproduced flow field of the model with that of the original full-order model. In addition, we evaluated the execution performance of the learning process. Using a single core memory group, the whole learning process indicates a value of 129.50 GFLOPS being achieved, 7.57% of the single-precision floating-point arithmetic peak performance. Notably, the convolution calculation for backward-propagation achieved 1103.09 GFLOPS, which is 65.39% of the peak. Furthermore, with the weak scaling test, the whole learning process indicates 72.9% with 25,250 nodes (1,212,000 cores) relative to 750 nodes, the sustained performance is 7.8 PFLOPS. In particular, the convolution calculation for backward-propagation indicates a result of 113 PFLOPS (66.2% of the peak performance).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
At the time of this calculation, Fugaku was not yet in operation.
 
2
Single-precision is sufficient for precise learning and can increase FLOPS by utilizing the SIMD register.
 
3
The first two modes, learned by two and 20 mode models, are not the same because if the number of modes when learning is different, the optimal set of modes to reconstruct the energy of the original field are different.
 
Literatur
1.
Zurück zum Zitat Taira, K., et al.: Modal analysis of fluid flows: an overview. AIAA J. 55(12), 4013–4041 (2017)CrossRef Taira, K., et al.: Modal analysis of fluid flows: an overview. AIAA J. 55(12), 4013–4041 (2017)CrossRef
2.
Zurück zum Zitat Jolliffe, I.T.: Principal Component Analysis, Springer Series in Statistics, 2nd edn. Springer, Heidelberg (2002) Jolliffe, I.T.: Principal Component Analysis, Springer Series in Statistics, 2nd edn. Springer, Heidelberg (2002)
3.
Zurück zum Zitat Lumley, J.L.: The structure of inhomogeneous turbulent flows. In: Yaglom, A.M., Tatarski, V.I. (Eds.) Atmospheric Turbulence and Wave Propagation, pp. 166–178. Nauka (1967) Lumley, J.L.: The structure of inhomogeneous turbulent flows. In: Yaglom, A.M., Tatarski, V.I. (Eds.) Atmospheric Turbulence and Wave Propagation, pp. 166–178. Nauka (1967)
4.
Zurück zum Zitat Holmes, P., Lumley, J.L., Berkooz, G., Rowley, C.W.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry, 2nd edn. Cambridge University Press, Cambridge (2012)CrossRef Holmes, P., Lumley, J.L., Berkooz, G., Rowley, C.W.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry, 2nd edn. Cambridge University Press, Cambridge (2012)CrossRef
5.
Zurück zum Zitat Chatterjee, A.: An introduction to the proper orthogonal decomposition. Curr. Sci. 78(7), 808–817 (2000) Chatterjee, A.: An introduction to the proper orthogonal decomposition. Curr. Sci. 78(7), 808–817 (2000)
6.
Zurück zum Zitat Berkooz, G., Holmes, P., Lumley, J.L.: The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25, 539–575 (1993)MathSciNetCrossRef Berkooz, G., Holmes, P., Lumley, J.L.: The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25, 539–575 (1993)MathSciNetCrossRef
7.
Zurück zum Zitat Taira, K.: Proper orthogonal decomposition in fluid flow analysis: 1 introduction. Nagare 30, 115–124 (2011). (in Japanese) Taira, K.: Proper orthogonal decomposition in fluid flow analysis: 1 introduction. Nagare 30, 115–124 (2011). (in Japanese)
8.
Zurück zum Zitat Aubry, N., Holmes, P., Lumley, J.L., Stone, E.: The dynamics of coherent structures in the wall region of a turbulent boundary layer. J. Fluid Mech. 192, 115–173 (1988)MathSciNetCrossRef Aubry, N., Holmes, P., Lumley, J.L., Stone, E.: The dynamics of coherent structures in the wall region of a turbulent boundary layer. J. Fluid Mech. 192, 115–173 (1988)MathSciNetCrossRef
9.
Zurück zum Zitat Noack, B.R., Morzynski, M., Tadmor, G.: Reduced-Order Modelling for Flow Control. Springer, Heidelberg (2011)CrossRef Noack, B.R., Morzynski, M., Tadmor, G.: Reduced-Order Modelling for Flow Control. Springer, Heidelberg (2011)CrossRef
10.
Zurück zum Zitat Taira, K., et al.: Modal analysis of fluid flows: applications and outlook. AIAA J. 58(3), 998–1022 (2020)CrossRef Taira, K., et al.: Modal analysis of fluid flows: applications and outlook. AIAA J. 58(3), 998–1022 (2020)CrossRef
13.
Zurück zum Zitat Hasegawa, K., Fukami, K., Murata, T., Fukagata, K.: Machine-learning-based reduced-order modeling for unsteady flows around bluff bodies of various shapes. Theor. Comput. Fluid Dyn. 34(4), 367–383 (2020)MathSciNetCrossRef Hasegawa, K., Fukami, K., Murata, T., Fukagata, K.: Machine-learning-based reduced-order modeling for unsteady flows around bluff bodies of various shapes. Theor. Comput. Fluid Dyn. 34(4), 367–383 (2020)MathSciNetCrossRef
14.
Zurück zum Zitat Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780 (1997)CrossRef Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780 (1997)CrossRef
16.
Zurück zum Zitat Patton, R.M., et al.: 167-PFlops deep learning for electron microscopy: from learning physics to atomic manipulation. In: SC18: International Conference for High Performance Computing, Networking, Storage and Analysis, Dallas, TX, USA, pp. 638–648 (2018). https://doi.org/10.1109/SC.2018.00053 Patton, R.M., et al.: 167-PFlops deep learning for electron microscopy: from learning physics to atomic manipulation. In: SC18: International Conference for High Performance Computing, Networking, Storage and Analysis, Dallas, TX, USA, pp. 638–648 (2018). https://​doi.​org/​10.​1109/​SC.​2018.​00053
17.
Zurück zum Zitat Kurth, T., et al.: Exascale deep learning for climate analytics. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage, and Analysis, SC 2018, p. 51. IEEE Press, NJ, USA (2018) Kurth, T., et al.: Exascale deep learning for climate analytics. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage, and Analysis, SC 2018, p. 51. IEEE Press, NJ, USA (2018)
18.
Zurück zum Zitat Yang, L., et al.: Highly-scalable, Physics-Informed GANs for Learning Solutions of Stochastic PDEs. In: 2019 IEEE/ACM Third Workshop on Deep Learning on Supercomputers (DLS), pp. 1–11, November 2019 Yang, L., et al.: Highly-scalable, Physics-Informed GANs for Learning Solutions of Stochastic PDEs. In: 2019 IEEE/ACM Third Workshop on Deep Learning on Supercomputers (DLS), pp. 1–11, November 2019
19.
Zurück zum Zitat Jia, W., et al.: Pushing the limit of molecular dynamics with ab initio accuracy to 100 million atoms with machine learning. In: 2020 SC20: International Conference for High Performance Computing, Networking, Storage and Analysis (SC), Atlanta, GA, US, pp. 1–14 (2020). https://doi.org/10.1109/SC41405.2020.00009 Jia, W., et al.: Pushing the limit of molecular dynamics with ab initio accuracy to 100 million atoms with machine learning. In: 2020 SC20: International Conference for High Performance Computing, Networking, Storage and Analysis (SC), Atlanta, GA, US, pp. 1–14 (2020). https://​doi.​org/​10.​1109/​SC41405.​2020.​00009
20.
Zurück zum Zitat Yoshida, T.: Fujitsu high performance CPU for the post-K computer. Hot Chips 30, 1–22 (2018) Yoshida, T.: Fujitsu high performance CPU for the post-K computer. Hot Chips 30, 1–22 (2018)
22.
Zurück zum Zitat TOP500.org.: TOP500 Supercomputer Sites (2020) TOP500.org.: TOP500 Supercomputer Sites (2020)
28.
Zurück zum Zitat Paszke, A., et al.: Automatic differentiation in PyTorch. In: NIPS-W (2017) Paszke, A., et al.: Automatic differentiation in PyTorch. In: NIPS-W (2017)
32.
Zurück zum Zitat Onishi, K., Obayashi, S., Nakahashi, K., Tsubokura, M.: Use of the immersed boundary method within the building cube method and its application to real vehicle CAD Data. In: 21st AIAA Computational Fluid 1029 Dynamics Conference. American Institute of Aeronautics and Astronautics, San Diego, CA (2013). https://doi.org/10.2514/6.2013-2713 Onishi, K., Obayashi, S., Nakahashi, K., Tsubokura, M.: Use of the immersed boundary method within the building cube method and its application to real vehicle CAD Data. In: 21st AIAA Computational Fluid 1029 Dynamics Conference. American Institute of Aeronautics and Astronautics, San Diego, CA (2013). https://​doi.​org/​10.​2514/​6.​2013-2713
35.
Zurück zum Zitat Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)MathSciNetCrossRef Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)MathSciNetCrossRef
Metadaten
Titel
Nonlinear Mode Decomposition and Reduced-Order Modeling for Three-Dimensional Cylinder Flow by Distributed Learning on Fugaku
verfasst von
Kazuto Ando
Keiji Onishi
Rahul Bale
Makoto Tsubokura
Akiyoshi Kuroda
Kazuo Minami
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-90539-2_8

Premium Partner