Skip to main content

2024 | OriginalPaper | Buchkapitel

OCGATL: One-Class Graph Attention Networks with Transformation Learning for Anomaly Detection for Argo Data

verfasst von : Yongguo Jiang, Hua Liu, Jiaxing Wang, Guangda Zhai

Erschienen in: Spatial Data and Intelligence

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As the typical representative of marine big data, the Argo plan conducts high-quality and scientific anomaly detection on Argo data, which is an important step in ocean science big data. However, in classical anomaly algorithms, Argo anomaly detection mostly has low accuracy, poor efficiency, and neglects the spatial continuity of Argo data. In the research on anomaly detection of spatial and regional data, graph anomaly detection has achieved excellent results. In the research of graph anomaly detection, depth based classification as a downstream anomaly detection method performs well, but at the same time, there are also problems of hyper sphere collapse and performance flipping. This article focuses on the research work related to the above issues: (1) Based on the study of Argo data and graph data, combined with the three-dimensional spatial characteristics of Argo buoy data, a novel graph data construction method is proposed. (2) Propose to incorporate neural transformation learning into the architecture, improve data learning expression ability, and further improve the shortcomings of graph neural classification, enabling it to adapt to the spatiotemporal and multi-dimensional characteristics of Argo buoy data for outlier detection. This article conducts experiments on five simulation datasets to demonstrate that the improved idea outperforms five state-of-the-art graph anomaly detection algorithms in various indicators, successfully improving the problems of hyper sphere collapse and performance flipping, and enhancing the accuracy and robustness of graph anomaly detection; The effectiveness of graph construction was demonstrated by comparing it with classical anomaly algorithms on real Argo sample data.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Yidi, Y., Hua, J., Huijiao, W., Xin, W.: Anomaly detection algorithm of argo profile based on sliding window and arma. Comput. Eng. Appl. 54(19), 254 (2018) Yidi, Y., Hua, J., Huijiao, W., Xin, W.: Anomaly detection algorithm of argo profile based on sliding window and arma. Comput. Eng. Appl. 54(19), 254 (2018)
2.
Zurück zum Zitat Hua, J., Yao, W., Xin, W., Huijiao, W.: Study on ocean data anomaly detection algorithm based on improved k-means clustering. Comput. Sci. 46(7), 6 (2019) Hua, J., Yao, W., Xin, W., Huijiao, W.: Study on ocean data anomaly detection algorithm based on improved k-means clustering. Comput. Sci. 46(7), 6 (2019)
3.
Zurück zum Zitat Qi, Z., Chenyan, Q., Changming, D.: A machine learning approach to quality-control argo temperature data. Atmos. Oceanic Sci. Lett. 16(4), 100292 (2023)CrossRef Qi, Z., Chenyan, Q., Changming, D.: A machine learning approach to quality-control argo temperature data. Atmos. Oceanic Sci. Lett. 16(4), 100292 (2023)CrossRef
4.
Zurück zum Zitat Ma, X., et al.: A comprehensive survey on graph anomaly detection with deep learning. IEEE Trans. Knowl. Data Eng. 35, 12012–12038 (2021)CrossRef Ma, X., et al.: A comprehensive survey on graph anomaly detection with deep learning. IEEE Trans. Knowl. Data Eng. 35, 12012–12038 (2021)CrossRef
6.
Zurück zum Zitat Gaddam, A., Wilkin, T., Angelova, M., Gaddam, J.: Detecting sensor faults, anomalies and outliers in the internet of things: a survey on the challenges and solutions. Electronics 9(3), 511 (2020)CrossRef Gaddam, A., Wilkin, T., Angelova, M., Gaddam, J.: Detecting sensor faults, anomalies and outliers in the internet of things: a survey on the challenges and solutions. Electronics 9(3), 511 (2020)CrossRef
7.
Zurück zum Zitat Dou, Y., Liu, Z., Sun, L., Deng, Y., Peng, H., Yu, P.S.: Enhancing graph neural network-based fraud detectors against camouflaged fraudsters. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pp. 315–324 (2020) Dou, Y., Liu, Z., Sun, L., Deng, Y., Peng, H., Yu, P.S.: Enhancing graph neural network-based fraud detectors against camouflaged fraudsters. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pp. 315–324 (2020)
8.
Zurück zum Zitat Ioannidis, V.N., Berberidis, D., Giannakis, G.B.: Unveiling anomalous nodes via random sampling and consensus on graphs. In: ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5499–5503. IEEE (2021) Ioannidis, V.N., Berberidis, D., Giannakis, G.B.: Unveiling anomalous nodes via random sampling and consensus on graphs. In: ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5499–5503. IEEE (2021)
10.
Zurück zum Zitat Yu, B., Yin, H., Zhu, Z.: Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting. In: Lang, J. (ed.) Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden, pp. 3634–3640 (2018) Yu, B., Yin, H., Zhu, Z.: Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting. In: Lang, J. (ed.) Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden, pp. 3634–3640 (2018)
11.
Zurück zum Zitat Peng, H., et al.: Fine-grained event categorization with heterogeneous graph convolutional networks. CoRR abs/1906.04580 (2019) Peng, H., et al.: Fine-grained event categorization with heterogeneous graph convolutional networks. CoRR abs/1906.04580 (2019)
12.
Zurück zum Zitat Wang, D., et al.: A semi-supervised graph attentive network for financial fraud detection. In: 2019 IEEE International Conference on Data Mining (ICDM), pp. 598–607. IEEE (2019) Wang, D., et al.: A semi-supervised graph attentive network for financial fraud detection. In: 2019 IEEE International Conference on Data Mining (ICDM), pp. 598–607. IEEE (2019)
13.
Zurück zum Zitat Wang, X., Jin, B., Du, Y., Cui, P., Tan, Y., Yang, Y.: One-class graph neural networks for anomaly detection in attributed networks. Neural Comput. Appl. 33, 12073–12085 (2021)CrossRef Wang, X., Jin, B., Du, Y., Cui, P., Tan, Y., Yang, Y.: One-class graph neural networks for anomaly detection in attributed networks. Neural Comput. Appl. 33, 12073–12085 (2021)CrossRef
14.
Zurück zum Zitat Ruff, L., et al.: Deep one-class classification. In: International Conference on Machine Learning, pp. 4393–4402. PMLR (2018) Ruff, L., et al.: Deep one-class classification. In: International Conference on Machine Learning, pp. 4393–4402. PMLR (2018)
15.
Zurück zum Zitat Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: International Conference on Learning Representations (2018) Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: International Conference on Learning Representations (2018)
16.
Zurück zum Zitat Zhao, L., Akoglu, L.: On using classification datasets to evaluate graph outlier detection: p[eculiar observations and new insights. Big Data 11, 151–180 (2021)CrossRef Zhao, L., Akoglu, L.: On using classification datasets to evaluate graph outlier detection: p[eculiar observations and new insights. Big Data 11, 151–180 (2021)CrossRef
17.
Zurück zum Zitat Golan, I., El-Yaniv, R.: Deep anomaly detection using geometric transformations. In: Advances in Neural Information Processing Systems, vol. 31 (2018) Golan, I., El-Yaniv, R.: Deep anomaly detection using geometric transformations. In: Advances in Neural Information Processing Systems, vol. 31 (2018)
18.
Zurück zum Zitat Qiu, C., Pfrommer, T., Kloft, M., Mandt, S., Rudolph, M.: Neural transformation learning for deep anomaly detection beyond images. In: International Conference on Machine Learning, pp. 8703–8714. PMLR (2021) Qiu, C., Pfrommer, T., Kloft, M., Mandt, S., Rudolph, M.: Neural transformation learning for deep anomaly detection beyond images. In: International Conference on Machine Learning, pp. 8703–8714. PMLR (2021)
19.
Zurück zum Zitat Akoglu, L., Tong, H., Koutra, D.: Graph based anomaly detection and description: a survey. Data Min. Knowl. Disc. 29, 626–688 (2015)MathSciNetCrossRef Akoglu, L., Tong, H., Koutra, D.: Graph based anomaly detection and description: a survey. Data Min. Knowl. Disc. 29, 626–688 (2015)MathSciNetCrossRef
20.
Zurück zum Zitat Shervashidze, N., Schweitzer, P., Van Leeuwen, E.J., Mehlhorn, K., Borgwardt, K.M.: Weisfeiler-lehman graph kernels. J. Mach. Learn. Res. 12(9) (2011) Shervashidze, N., Schweitzer, P., Van Leeuwen, E.J., Mehlhorn, K., Borgwardt, K.M.: Weisfeiler-lehman graph kernels. J. Mach. Learn. Res. 12(9) (2011)
21.
Zurück zum Zitat Neumann, M., Garnett, R., Bauckhage, C., Kersting, K.: Propagation kernels: efficient graph kernels from propagated information. Mach. Learn. 102, 209–245 (2016)MathSciNetCrossRef Neumann, M., Garnett, R., Bauckhage, C., Kersting, K.: Propagation kernels: efficient graph kernels from propagated information. Mach. Learn. 102, 209–245 (2016)MathSciNetCrossRef
22.
Zurück zum Zitat Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 413–422. IEEE (2008) Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 413–422. IEEE (2008)
23.
Zurück zum Zitat Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 93–104 (2000) Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 93–104 (2000)
24.
Zurück zum Zitat Schölkopf, B., Williamson, R.C., Smola, A., Shawe-Taylor, J., Platt, J.: Support vector method for novelty detection. In: Advances in Neural Information Processing Systems, vol. 12 (1999) Schölkopf, B., Williamson, R.C., Smola, A., Shawe-Taylor, J., Platt, J.: Support vector method for novelty detection. In: Advances in Neural Information Processing Systems, vol. 12 (1999)
25.
Zurück zum Zitat Tax, D.M., Duin, R.P.: Support vector data description. Mach. Learn. 54, 45–66 (2004)CrossRef Tax, D.M., Duin, R.P.: Support vector data description. Mach. Learn. 54, 45–66 (2004)CrossRef
26.
Zurück zum Zitat Zhang, F., Fan, H., Wang, R., Li, Z., Liang, T.: Deep dual support vector data description for anomaly detection on attributed networks. Int. J. Intell. Syst. 37(2), 1509–1528 (2022)CrossRef Zhang, F., Fan, H., Wang, R., Li, Z., Liang, T.: Deep dual support vector data description for anomaly detection on attributed networks. Int. J. Intell. Syst. 37(2), 1509–1528 (2022)CrossRef
27.
Zurück zum Zitat Ruff, L., et al.: A unifying review of deep and shallow anomaly detection. Proc. IEEE 109(5), 756–795 (2021)CrossRef Ruff, L., et al.: A unifying review of deep and shallow anomaly detection. Proc. IEEE 109(5), 756–795 (2021)CrossRef
28.
Zurück zum Zitat Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020) Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)
29.
Zurück zum Zitat He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020) He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)
30.
Zurück zum Zitat Wang, Y., Wang, J., Cao, Z., Barati Farimani, A.: Molecular contrastive learning of representations via graph neural networks. Nat. Mach. Intell. 4(3), 279–287 (2022)CrossRef Wang, Y., Wang, J., Cao, Z., Barati Farimani, A.: Molecular contrastive learning of representations via graph neural networks. Nat. Mach. Intell. 4(3), 279–287 (2022)CrossRef
31.
Zurück zum Zitat Velickovic, P., Fedus, W., Hamilton, W.L., Liò, P., Bengio, Y., Hjelm, R.D.: Deep graph infomax. ICLR (Poster) 2(3), 4 (2019) Velickovic, P., Fedus, W., Hamilton, W.L., Liò, P., Bengio, Y., Hjelm, R.D.: Deep graph infomax. ICLR (Poster) 2(3), 4 (2019)
32.
Zurück zum Zitat Peng, Z., et al.: Graph representation learning via graphical mutual information maximization. In: Proceedings of The Web Conference 2020, pp. 259–270 (2020) Peng, Z., et al.: Graph representation learning via graphical mutual information maximization. In: Proceedings of The Web Conference 2020, pp. 259–270 (2020)
33.
Zurück zum Zitat You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., Shen, Y.: Graph contrastive learning with augmentations. Adv. Neural. Inf. Process. Syst. 33, 5812–5823 (2020) You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., Shen, Y.: Graph contrastive learning with augmentations. Adv. Neural. Inf. Process. Syst. 33, 5812–5823 (2020)
34.
Zurück zum Zitat Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, pp. 2069–2080 (2021) Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, pp. 2069–2080 (2021)
35.
Zurück zum Zitat Liu, Y., Li, Z., Pan, S., Gong, C., Zhou, C., Karypis, G.: Anomaly detection on attributed networks via contrastive self-supervised learning. IEEE Trans. Neural Netw. Learn. Syst. 33(6), 2378–2392 (2021)MathSciNetCrossRef Liu, Y., Li, Z., Pan, S., Gong, C., Zhou, C., Karypis, G.: Anomaly detection on attributed networks via contrastive self-supervised learning. IEEE Trans. Neural Netw. Learn. Syst. 33(6), 2378–2392 (2021)MathSciNetCrossRef
36.
Zurück zum Zitat Zheng, Y., Jin, M., Liu, Y., Chi, L., Phan, K.T., Chen, Y.P.P.: Generative and contrastive self-supervised learning for graph anomaly detection. IEEE Trans. Knowl. Data Eng. (2021) Zheng, Y., Jin, M., Liu, Y., Chi, L., Phan, K.T., Chen, Y.P.P.: Generative and contrastive self-supervised learning for graph anomaly detection. IEEE Trans. Knowl. Data Eng. (2021)
37.
Zurück zum Zitat Zheng, Y., et al.: From unsupervised to few-shot graph anomaly detection: a multi-scale contrastive learning approach. arXiv preprint arXiv:2202.05525 (2022) Zheng, Y., et al.: From unsupervised to few-shot graph anomaly detection: a multi-scale contrastive learning approach. arXiv preprint arXiv:​2202.​05525 (2022)
38.
Zurück zum Zitat Ying, C., Hui, Z.: Spatio-temporal distribution of chlorophyll in the mid-western south china sea. J. Mar. Sci. 39, 84–94 (2021) Ying, C., Hui, Z.: Spatio-temporal distribution of chlorophyll in the mid-western south china sea. J. Mar. Sci. 39, 84–94 (2021)
39.
Zurück zum Zitat Peng, H., Qing, Y., Zefan, Y., Kun, H., Jiangguang, P.: Experimental study on dissolved oxygen content in water and its physical influence factors. J. Hydraul. Eng. 50(6), 8 (2019) Peng, H., Qing, Y., Zefan, Y., Kun, H., Jiangguang, P.: Experimental study on dissolved oxygen content in water and its physical influence factors. J. Hydraul. Eng. 50(6), 8 (2019)
40.
Zurück zum Zitat Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017) Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
41.
Zurück zum Zitat Brody, S., Alon, U., Yahav, E.: How attentive are graph attention networks? In: International Conference on Learning Representations (2022) Brody, S., Alon, U., Yahav, E.: How attentive are graph attention networks? In: International Conference on Learning Representations (2022)
42.
Zurück zum Zitat Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.i., Jegelka, S.: Representation learning on graphs with jumping knowledge networks. In: International Conference on Machine Learning, pp. 5453–5462. PMLR (2018) Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.i., Jegelka, S.: Representation learning on graphs with jumping knowledge networks. In: International Conference on Machine Learning, pp. 5453–5462. PMLR (2018)
43.
Zurück zum Zitat Shchur, O., Mumme, M., Bojchevski, A., Günnemann, S.: Pitfalls of graph neural network evaluation. CoRR abs/1811.05868 (2018) Shchur, O., Mumme, M., Bojchevski, A., Günnemann, S.: Pitfalls of graph neural network evaluation. CoRR abs/1811.05868 (2018)
44.
Zurück zum Zitat Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-Rad, T.: Collective classification in network data. AI Mag. 29(3), 93–93 (2008) Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-Rad, T.: Collective classification in network data. AI Mag. 29(3), 93–93 (2008)
45.
Zurück zum Zitat Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: International Conference on Learning Representations, ICLR 2017 (2017) Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: International Conference on Learning Representations, ICLR 2017 (2017)
46.
Zurück zum Zitat Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Advances in Neural Information Processing Systems, vol. 30 (2017) Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
47.
Zurück zum Zitat Bandyopadhyay, S., Vivek, S.V., Murty, M.: Outlier resistant unsupervised deep architectures for attributed network embedding. In: Proceedings of the 13th International Conference on Web Search and Data Mining, pp. 25–33 (2020) Bandyopadhyay, S., Vivek, S.V., Murty, M.: Outlier resistant unsupervised deep architectures for attributed network embedding. In: Proceedings of the 13th International Conference on Web Search and Data Mining, pp. 25–33 (2020)
48.
Zurück zum Zitat Ding, K., Li, J., Bhanushali, R., Liu, H.: Deep anomaly detection on attributed networks. In: Proceedings of the 2019 SIAM International Conference on Data Mining, pp. 594–602. SIAM (2019) Ding, K., Li, J., Bhanushali, R., Liu, H.: Deep anomaly detection on attributed networks. In: Proceedings of the 2019 SIAM International Conference on Data Mining, pp. 594–602. SIAM (2019)
49.
Zurück zum Zitat Fan, H., Zhang, F., Li, Z.: Anomalydae: dual autoencoder for anomaly detection on attributed networks. In: ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5685–5689. IEEE (2020) Fan, H., Zhang, F., Li, Z.: Anomalydae: dual autoencoder for anomaly detection on attributed networks. In: ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5685–5689. IEEE (2020)
Metadaten
Titel
OCGATL: One-Class Graph Attention Networks with Transformation Learning for Anomaly Detection for Argo Data
verfasst von
Yongguo Jiang
Hua Liu
Jiaxing Wang
Guangda Zhai
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-2966-1_12

Premium Partner