Skip to main content

2024 | OriginalPaper | Buchkapitel

Optimizing Robotic Arm Efficiency: Synergizing Aerodynamics with Arduino Control for Enhanced Six Degrees of Freedom

verfasst von : Akshay Mohan, Mohan Kumar Akurathi, Priyanka Vashisht, Aman Jatain

Erschienen in: Recent Advances in Aerospace Engineering

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The combination of robotics and aerodynamics has proven to be an interesting field of study, leading to advances in many fields. This brief presents a new approach to the design and control of a robotic arm that focuses on aerodynamics. The robotic arm uses an Arduino microcontroller for simplicity and ease of use. The aerodynamic design of the robot arm is designed to increase efficiency and effectiveness by reducing weight and improving lift. By using the aerodynamic structure, the structure of the arm is streamlined to reduce air resistance, resulting in more fluid and clear power. The choice of heavy and durable materials further contributes to the aerodynamic performance. The control of the robotic arm is used by the Arduino microcontroller, which provides various platforms to work and interact with various sensors and actuators. Control algorithms include real-time feedback from position and force sensors to make precise and responsive movements. Aerodynamic design principles are incorporated into the controller, which can adjust the configuration of the robotic arm according to atmospheric conditions. This research contributes to the field of robotics by demonstrating the benefits of integrated aerodynamics and Arduino-based control in the creation of human arms. These findings lead to the development of more efficient robotic systems and provide valuable insights for future research at the intersection of robotics and aerodynamics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Katal G, Gupta S, Kakkar S (2013) Design and operation of synchronized robotic arm. IJRET Int J Res Eng Technol 1163–2319 Katal G, Gupta S, Kakkar S (2013) Design and operation of synchronized robotic arm. IJRET Int J Res Eng Technol 1163–2319
2.
Zurück zum Zitat Omijeh BO, Uhunmwangho R, Ehikhamenle M (2014) Design analysis of a remote controlled pick and place robotic vehicle. Int J Eng Res Dev 10(5):57–68 Omijeh BO, Uhunmwangho R, Ehikhamenle M (2014) Design analysis of a remote controlled pick and place robotic vehicle. Int J Eng Res Dev 10(5):57–68
3.
Zurück zum Zitat Nishar KD, Sekar I (2015) Vision assisted pick and place robotic Arm. Adv Vis Comput An Int J 2(3):9–18CrossRef Nishar KD, Sekar I (2015) Vision assisted pick and place robotic Arm. Adv Vis Comput An Int J 2(3):9–18CrossRef
4.
Zurück zum Zitat Nair SR (2012) Design of an optically controlled robotic arm for picking and placing an object. Int J Sci Res Publ 173 Nair SR (2012) Design of an optically controlled robotic arm for picking and placing an object. Int J Sci Res Publ 173
5.
Zurück zum Zitat Elfasakhany A, Yanez E, Baylon K, Salgado R (2011) Design and development of a competitive low-cost robot arm with four degrees of freedom. Mod Mech Eng 1(02):47–55CrossRef Elfasakhany A, Yanez E, Baylon K, Salgado R (2011) Design and development of a competitive low-cost robot arm with four degrees of freedom. Mod Mech Eng 1(02):47–55CrossRef
6.
Zurück zum Zitat Quigley M, Asbeck A, Ng A (2011) A low-cost compliant 7-DOF robotic manipulator. In: 2011 IEEE international conference on robotics and automation. IEEE, pp 6051–6058 Quigley M, Asbeck A, Ng A (2011) A low-cost compliant 7-DOF robotic manipulator. In: 2011 IEEE international conference on robotics and automation. IEEE, pp 6051–6058
7.
Zurück zum Zitat Patel HK, Verma P, Ranka S (2011) Design and development of co-ordinate based autonomous robotic arm. In: 2011 Nirma University international conference on engineering. IEEE, pp 1–6 Patel HK, Verma P, Ranka S (2011) Design and development of co-ordinate based autonomous robotic arm. In: 2011 Nirma University international conference on engineering. IEEE, pp 1–6
8.
Zurück zum Zitat Gunasekaran K (2015) Design and analysis of articulated inspection arm of a robot. Int J Trends Eng Technol 5(1) Gunasekaran K (2015) Design and analysis of articulated inspection arm of a robot. Int J Trends Eng Technol 5(1)
9.
Zurück zum Zitat Dhote PK, Mohanta JC, Nayab Zafar M (2012) Motion analysis of articulated robotic arm for industrial application Dhote PK, Mohanta JC, Nayab Zafar M (2012) Motion analysis of articulated robotic arm for industrial application
10.
Zurück zum Zitat Clothier KE, Shang Y (2010) A geometric approach for robotic arm kinematics with hardware design, electrical design, and implementation. J Robot Clothier KE, Shang Y (2010) A geometric approach for robotic arm kinematics with hardware design, electrical design, and implementation. J Robot
11.
Zurück zum Zitat Oliveira LA, Costa JJ, Carvalho MG, Gerhardt HJ, Kramer C (1991) On aerodynamic sealing for industrial applications. J Wind Eng Ind Aerodyn 37(3):255–268CrossRef Oliveira LA, Costa JJ, Carvalho MG, Gerhardt HJ, Kramer C (1991) On aerodynamic sealing for industrial applications. J Wind Eng Ind Aerodyn 37(3):255–268CrossRef
12.
Zurück zum Zitat Bhargava A, Kumar A (2017) Arduino controlled robotic arm. In: 2017 International conference of electronics, communication and aerospace technology (ICECA), vol 2. IEEE, pp 376–380 Bhargava A, Kumar A (2017) Arduino controlled robotic arm. In: 2017 International conference of electronics, communication and aerospace technology (ICECA), vol 2. IEEE, pp 376–380
13.
Zurück zum Zitat Pohlmeyer EA, Mahmoudi B, Geng S, Prins NW, Sanchez JC (2014) Using reinforcement learning to provide stable brain-machine interface control despite neural input reorganization. PLoS ONE 9(1):e87253CrossRef Pohlmeyer EA, Mahmoudi B, Geng S, Prins NW, Sanchez JC (2014) Using reinforcement learning to provide stable brain-machine interface control despite neural input reorganization. PLoS ONE 9(1):e87253CrossRef
14.
Zurück zum Zitat Lebedev MA, Nicolelis MA (2006) Brain–machine interfaces: past, present and future. TRENDS Neurosci 29(9):536–546 Lebedev MA, Nicolelis MA (2006) Brain–machine interfaces: past, present and future. TRENDS Neurosci 29(9):536–546
15.
Zurück zum Zitat Pawar V, Bire S, More S, More K, Mule R (2018) Review on design and development of robotic arm generation-1. Int J Innov Sci Res Technol 3(3) Pawar V, Bire S, More S, More K, Mule R (2018) Review on design and development of robotic arm generation-1. Int J Innov Sci Res Technol 3(3)
16.
Zurück zum Zitat Müller-Putz G (2021) Invasive BCI approaches for restoration of upper extremity movements. In: Neuroprosthetics and brain-computer interfaces in spinal cord injury: a guide for clinicians and end users. Springer, Cham, pp 217–232 Müller-Putz G (2021) Invasive BCI approaches for restoration of upper extremity movements. In: Neuroprosthetics and brain-computer interfaces in spinal cord injury: a guide for clinicians and end users. Springer, Cham, pp 217–232
17.
Zurück zum Zitat Mahanta GB, Deepak BBVL, Dileep M, Biswal BB, Pattanayak SK (2019) Prediction of inverse kinematics for a 6-DOF Industrial robot Arm using soft computing techniques. In: Soft computing for problem solving: SocProS 2017, vol 2. Springer, Singapore, pp 519–530 Mahanta GB, Deepak BBVL, Dileep M, Biswal BB, Pattanayak SK (2019) Prediction of inverse kinematics for a 6-DOF Industrial robot Arm using soft computing techniques. In: Soft computing for problem solving: SocProS 2017, vol 2. Springer, Singapore, pp 519–530
18.
Zurück zum Zitat Du G, Yao G, Li C, Liu PX (2021) An offline-merge-online robot teaching method based on natural human-robot interaction and visual-aid algorithm. IEEE/ASME Trans Mechatron 27(5):2752–2763CrossRef Du G, Yao G, Li C, Liu PX (2021) An offline-merge-online robot teaching method based on natural human-robot interaction and visual-aid algorithm. IEEE/ASME Trans Mechatron 27(5):2752–2763CrossRef
Metadaten
Titel
Optimizing Robotic Arm Efficiency: Synergizing Aerodynamics with Arduino Control for Enhanced Six Degrees of Freedom
verfasst von
Akshay Mohan
Mohan Kumar Akurathi
Priyanka Vashisht
Aman Jatain
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-1306-6_44

    Premium Partner