Skip to main content

2024 | OriginalPaper | Buchkapitel

Seismic Response of Spar Floating Offshore Wind Turbine

verfasst von : Maria James, Sumanta Haldar, Subhamoy Bhattacharya

Erschienen in: Proceedings of the Indian Geotechnical Conference 2022 Volume 2

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The future of the offshore wind market is looking forward to floating foundations as they are more promising in deep waters. Seismicity is a concern along the offshores of the Western United States and East Asia, which has fueled scientific interest in seismic design. This study focuses on the performance-based seismic design of spar floating wind turbines. Spar is a ballast stabilized structure anchored to seabed using catenary mooring lines. A three-dimensional model of the platform-mooring-anchor system is developed in ABAQUS CAE, where the soil is modeled using non-linear Winkler’s spring. The hydrostatic stiffness is represented using springs. Hybrid beam elements (high axial stiffness compared to bending stiffness) are used to model the mooring line. The effect of high-intensity earthquake shaking, peak ground acceleration, predominant frequency, and the impact of combined seismic-wave loading are evaluated in detail. Wave loads are observed to govern the design of spar wind turbines. In all the cases considered, seismic responses are found to be minimal. This preliminary study noted that spar floating wind turbines are less susceptible to earthquake dynamics due to the catenary shape, low mass of cable, and the long natural vibration period. This study will help to evaluate the feasibility of spar floating wind turbines in seismically vulnerable areas.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat ABAQUS (2018) Abaqus user manual, version 6.10. Dassault Systemes Simulia Corp ABAQUS (2018) Abaqus user manual, version 6.10. Dassault Systemes Simulia Corp
2.
Zurück zum Zitat API-RP-2GEO (2011) Geotechnical and foundation design considerations. American Petroleum Institute, Washington, DC, USA API-RP-2GEO (2011) Geotechnical and foundation design considerations. American Petroleum Institute, Washington, DC, USA
3.
Zurück zum Zitat Almheriegh MA (2021) Calculating environmental design loads for floating wind turbine. Am Acad Sci Res J Eng Technol Sci 82:52–65 Almheriegh MA (2021) Calculating environmental design loads for floating wind turbine. Am Acad Sci Res J Eng Technol Sci 82:52–65
4.
Zurück zum Zitat Amani S, Prabhakaran A, Bhattacharya S (2022) Design of monopiles for offshore and nearshore wind turbines in seismically liquefiable soils: methodology and validation. Soil Dyn Earthq Eng 157:107252CrossRef Amani S, Prabhakaran A, Bhattacharya S (2022) Design of monopiles for offshore and nearshore wind turbines in seismically liquefiable soils: methodology and validation. Soil Dyn Earthq Eng 157:107252CrossRef
5.
Zurück zum Zitat Arablouei A, Cai W, Sari A (2016) Seismic assessment of tension-leg platforms. In: Offshore Technology Conference, OnePetro Arablouei A, Cai W, Sari A (2016) Seismic assessment of tension-leg platforms. In: Offshore Technology Conference, OnePetro
6.
Zurück zum Zitat Bhattacharya S, Biswal S, Aleem M, Amani S, Prabhakaran A, Prakhya G et al (2021) Seismic design of offshore wind turbines: good, bad and unknowns. Energies 14(12):3496CrossRef Bhattacharya S, Biswal S, Aleem M, Amani S, Prabhakaran A, Prakhya G et al (2021) Seismic design of offshore wind turbines: good, bad and unknowns. Energies 14(12):3496CrossRef
7.
Zurück zum Zitat Bhattacharya S, Lombardi D, Amani S, Aleem M, Prakhya G, Adhikari S et al (2021) Physical modelling of offshore wind turbine foundations for TRL (technology readiness level) studies. J Mar Sci Eng 9(6):589CrossRef Bhattacharya S, Lombardi D, Amani S, Aleem M, Prakhya G, Adhikari S et al (2021) Physical modelling of offshore wind turbine foundations for TRL (technology readiness level) studies. J Mar Sci Eng 9(6):589CrossRef
8.
Zurück zum Zitat Bhattacharya S, De Risi R, Lombardi D, Ali A, Demirci HE, Haldar S (2021) On the seismic analysis and design of offshore wind turbines. Soil Dyn Earthq Eng 145:106692CrossRef Bhattacharya S, De Risi R, Lombardi D, Ali A, Demirci HE, Haldar S (2021) On the seismic analysis and design of offshore wind turbines. Soil Dyn Earthq Eng 145:106692CrossRef
9.
Zurück zum Zitat Bungum H, Olesen O (2004) The 31st of August 1819 Luroy earthquake revisited. Norw J Geol 85:245–252 Bungum H, Olesen O (2004) The 31st of August 1819 Luroy earthquake revisited. Norw J Geol 85:245–252
10.
Zurück zum Zitat Chandrasekaran S, Jain AK, Chandak NR (2006) Seismic analysis of offshore triangular tension leg platforms. Int J Struct Stab Dyn 6:97–120 Chandrasekaran S, Jain AK, Chandak NR (2006) Seismic analysis of offshore triangular tension leg platforms. Int J Struct Stab Dyn 6:97–120
11.
Zurück zum Zitat James M, Haldar S, Bhattacharya S (2024) Impact of climate change on the design of multi-megawatt spar floating wind turbines. Mar Struct 93:103547CrossRef James M, Haldar S, Bhattacharya S (2024) Impact of climate change on the design of multi-megawatt spar floating wind turbines. Mar Struct 93:103547CrossRef
12.
Zurück zum Zitat James M, Haldar S (2021) Seismic design of large offshore wind turbine considering rocking vibration. In: Transportation, water and environmental geotechnics. Springer, Singapore, pp 411–422 James M, Haldar S (2021) Seismic design of large offshore wind turbine considering rocking vibration. In: Transportation, water and environmental geotechnics. Springer, Singapore, pp 411–422
13.
Zurück zum Zitat James M, Haldar S (2022, September) Seismic vulnerability of jacket supported large offshore wind turbine considering multidirectional ground motions. In: Structures. Elsevier, vol 43, pp 407–423 James M, Haldar S (2022, September) Seismic vulnerability of jacket supported large offshore wind turbine considering multidirectional ground motions. In: Structures. Elsevier, vol 43, pp 407–423
14.
Zurück zum Zitat James M, Haldar S, Varghese R, Bhattacharya S, Pakrashi V (2023) Climate change effects on offshore wind turbines. In: Wind energy engineering. Academic Press, pp 413–422 James M, Haldar S, Varghese R, Bhattacharya S, Pakrashi V (2023) Climate change effects on offshore wind turbines. In: Wind energy engineering. Academic Press, pp 413–422
15.
Zurück zum Zitat Jonkman J, Butterfield S, Musial W, Scott G (2009) Definition of a 5-MW reference wind turbine for offshore system development, NREL/TP-500-38060. National Renewable Energy Laboratory Jonkman J, Butterfield S, Musial W, Scott G (2009) Definition of a 5-MW reference wind turbine for offshore system development, NREL/TP-500-38060. National Renewable Energy Laboratory
16.
Zurück zum Zitat Katsanos EI, Thöns S, Georgakis CΤ (2016) Wind turbines and seismic hazard: a state-of-the-art review. Wind Energy 19:2113–2133CrossRef Katsanos EI, Thöns S, Georgakis CΤ (2016) Wind turbines and seismic hazard: a state-of-the-art review. Wind Energy 19:2113–2133CrossRef
17.
Zurück zum Zitat Kawanishi T, Furuta H, Kato W (1987) Earthquake response of tension leg platform with gravity anchor. J Soc Naval Archtects Jpn 517z22 Kawanishi T, Furuta H, Kato W (1987) Earthquake response of tension leg platform with gravity anchor. J Soc Naval Archtects Jpn 517z22
18.
Zurück zum Zitat Kawanishi T, Ohashi S, Takamura H, Kobayashi H (1993) Earthquake response of the tension leg platform under unbalanced initial tension. In: The third international offshore and polar engineering conference, OnePetro Kawanishi T, Ohashi S, Takamura H, Kobayashi H (1993) Earthquake response of the tension leg platform under unbalanced initial tension. In: The third international offshore and polar engineering conference, OnePetro
19.
Zurück zum Zitat Kokubun K, Taniguchi T, Inoue S (2013) Effects of earthquake and tsunami on floating offshore wind turbine. In: Proceedings of international symposium on marine and offshore renewable, vol 5 Kokubun K, Taniguchi T, Inoue S (2013) Effects of earthquake and tsunami on floating offshore wind turbine. In: Proceedings of international symposium on marine and offshore renewable, vol 5
20.
Zurück zum Zitat Liou GS, Penzien J, Yeung RW (1988) Response of tension‐leg platforms to vertical seismic excitations. Earthq Eng Struct Dyn 16(2):157–182 Liou GS, Penzien J, Yeung RW (1988) Response of tension‐leg platforms to vertical seismic excitations. Earthq Eng Struct Dyn 16(2):157–182
21.
Zurück zum Zitat Ma KT, Luo Y, Kwan CTT, Wu Y (2019) Mooring system engineering for offshore structures. Gulf Professional Publishing Ma KT, Luo Y, Kwan CTT, Wu Y (2019) Mooring system engineering for offshore structures. Gulf Professional Publishing
22.
Zurück zum Zitat Matha D (2010) Model development and loads analysis of an offshore wind turbine on a tension leg platform with a comparison to other floating turbine concepts: April 2009 (No. NREL/SR-500-45891). National Renewable Energy Lab (NREL), Golden, CO (United States) Matha D (2010) Model development and loads analysis of an offshore wind turbine on a tension leg platform with a comparison to other floating turbine concepts: April 2009 (No. NREL/SR-500-45891). National Renewable Energy Lab (NREL), Golden, CO (United States)
23.
Zurück zum Zitat Patra SK, Haldar S (2021) Fore-aft and the side-to-side response of monopile supported offshore wind turbine in liquefiable soil. Mar Georesour Geotechnol 39(12):1411–1432CrossRef Patra SK, Haldar S (2021) Fore-aft and the side-to-side response of monopile supported offshore wind turbine in liquefiable soil. Mar Georesour Geotechnol 39(12):1411–1432CrossRef
24.
Zurück zum Zitat Patra SK, Haldar S (2021) Long-term drained and post-liquefaction cyclic behaviour of offshore wind turbine in silty sand using element tests. Arab J Sci Eng 46(5):4791–4810CrossRef Patra SK, Haldar S (2021) Long-term drained and post-liquefaction cyclic behaviour of offshore wind turbine in silty sand using element tests. Arab J Sci Eng 46(5):4791–4810CrossRef
25.
Zurück zum Zitat Patra SK, Haldar S, Bhattacharya S (2022) Predicting tilting of monopile supported wind turbines during seismic liquefaction. Ocean Eng 252:111145CrossRef Patra SK, Haldar S, Bhattacharya S (2022) Predicting tilting of monopile supported wind turbines during seismic liquefaction. Ocean Eng 252:111145CrossRef
26.
Zurück zum Zitat Patra SK, Haldar S (2021, June) Seismic response of monopile supported offshore wind turbine in liquefiable soil. In: Structures. Elsevier, vol 31, pp 248–265 Patra SK, Haldar S (2021, June) Seismic response of monopile supported offshore wind turbine in liquefiable soil. In: Structures. Elsevier, vol 31, pp 248–265
27.
Zurück zum Zitat Patra SK, Haldar S (2021) Response of monopile supported offshore wind turbine in liquefied soil. In: Geohazards. Springer, Singapore, pp 367–382 Patra SK, Haldar S (2021) Response of monopile supported offshore wind turbine in liquefied soil. In: Geohazards. Springer, Singapore, pp 367–382
28.
Zurück zum Zitat De Risi R, Bhattacharya S, Goda K (2018) Seismic performance assessment of monopile-supported offshore wind turbines using unscaled natural earthquake records. Soil Dyn Earthq Eng 109:154–172CrossRef De Risi R, Bhattacharya S, Goda K (2018) Seismic performance assessment of monopile-supported offshore wind turbines using unscaled natural earthquake records. Soil Dyn Earthq Eng 109:154–172CrossRef
29.
Zurück zum Zitat Shaji SP, Jayalekshmi R. Earthquake analysis of mini tension leg platforms under random waves Shaji SP, Jayalekshmi R. Earthquake analysis of mini tension leg platforms under random waves
30.
Zurück zum Zitat Suroor H, Arablouei A (2019) Comparison of coupled and decoupled seismic analysis of TLP piles. Offshore Technology Conference, OnePetro Suroor H, Arablouei A (2019) Comparison of coupled and decoupled seismic analysis of TLP piles. Offshore Technology Conference, OnePetro
31.
Zurück zum Zitat Suzuki K, Yamaguchi H, Akase M, Imakita A, Ishihara T, Fukumoto Y, Oyama T (2011) Initial design of tension leg platform for offshore wind farm. J Fluid Sci Technol 6(3):372–381 Suzuki K, Yamaguchi H, Akase M, Imakita A, Ishihara T, Fukumoto Y, Oyama T (2011) Initial design of tension leg platform for offshore wind farm. J Fluid Sci Technol 6(3):372–381
32.
Zurück zum Zitat Thangam Babu PV, Reddy DV (1986) Dynamic coupled fluid-structure interaction analysis of flexible floating platforms. J Energy Resour Technol 108/207 Thangam Babu PV, Reddy DV (1986) Dynamic coupled fluid-structure interaction analysis of flexible floating platforms. J Energy Resour Technol 108/207
33.
Zurück zum Zitat Tsiapas YZ, Chaloulos YK, Bouckovalas GD, Bazaios KN (2021) Performance based design of tension leg platforms under seismic loading and seabed liquefaction: a feasibility study. Soil Dyn Earthq Eng 150:106894CrossRef Tsiapas YZ, Chaloulos YK, Bouckovalas GD, Bazaios KN (2021) Performance based design of tension leg platforms under seismic loading and seabed liquefaction: a feasibility study. Soil Dyn Earthq Eng 150:106894CrossRef
34.
Zurück zum Zitat Yu Y, Li Z, Cheng S, Zhao M, Cui Y, Yu J, Xu L (2021) Dynamic response of deepwater tension leg platform under seismic ground motion and wave loading. In: ISOPE international ocean and polar engineering conference. ISOPE, pp ISOPE-I Yu Y, Li Z, Cheng S, Zhao M, Cui Y, Yu J, Xu L (2021) Dynamic response of deepwater tension leg platform under seismic ground motion and wave loading. In: ISOPE international ocean and polar engineering conference. ISOPE, pp ISOPE-I
35.
Zurück zum Zitat Zhang L, Shi W, Karimirad M, Michailides C, Jiang Z (2020) Second-order hydrodynamic effects on the response of three semisubmersible floating offshore wind turbines. Ocean Eng 207:107371CrossRef Zhang L, Shi W, Karimirad M, Michailides C, Jiang Z (2020) Second-order hydrodynamic effects on the response of three semisubmersible floating offshore wind turbines. Ocean Eng 207:107371CrossRef
Metadaten
Titel
Seismic Response of Spar Floating Offshore Wind Turbine
verfasst von
Maria James
Sumanta Haldar
Subhamoy Bhattacharya
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-1741-5_29