Skip to main content

2024 | OriginalPaper | Buchkapitel

4. Smart Gait Healthcare Applications: Walking Status and Gait Biometrics

verfasst von : Tin-Chih Toly Chen, Yun-Ju Lee

Erschienen in: Smart and Healthy Walking

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter introduces the fundamental principles of gait analysis, covering normal and abnormal gait features and the significance of clinical gait analysis. Wearable sensor technology, particularly Inertial Measurement Units (IMUs), is highlighted for utilization in gait analysis, referencing studies that explore IMU data methods for gait recognition and prediction and using deep learning models for gait classification. Thoroughly explores gait biometrics, highlighting physical and behavioral traits crucial for gait recognition while underscoring the importance of sensor and posture datasets in training and assessing machine and deep learning models. Furthermore, diverse sensing modalities like video, pressure, and IMU are applied in gait recognition, detailing their respective features and techniques. Environmental-based gait biometrics systems’ potential applications and value showcase practical scenarios such as indoor positioning, activity monitoring, and personal identification in smart buildings and home environments. Intelligent gait health applications encompass clinical intelligent gait, remote gait monitoring, and smart home integration. An innovative method for gait assessment involving advanced wearable technology and AI-powered computational platforms, live monitoring via wearable IMU devices and machine learning, and a gait biometric recognition system hosted in the cloud for secure smart home entry. These innovations offer broader prospects for gait assessment and monitoring, along with associated challenges and requirements for clinical and daily life applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S.A. Bridenbaugh, R.W. Kressig, Quantitative gait disturbances in older adults with cognitive impairments. Curr. Pharm. Des. 20(19), 3165–3172 (2014)CrossRef S.A. Bridenbaugh, R.W. Kressig, Quantitative gait disturbances in older adults with cognitive impairments. Curr. Pharm. Des. 20(19), 3165–3172 (2014)CrossRef
2.
Zurück zum Zitat A.H. Snijders et al., Neurological gait disorders in elderly people: clinical approach and classification. Lancet Neurol. 6(1), 63–74 (2007)CrossRef A.H. Snijders et al., Neurological gait disorders in elderly people: clinical approach and classification. Lancet Neurol. 6(1), 63–74 (2007)CrossRef
3.
Zurück zum Zitat S. Kyeong et al., Gait pattern analysis and clinical subgroup identification: a retrospective observational study. Medicine (Baltimore) 99(15), e19555 (2020)CrossRef S. Kyeong et al., Gait pattern analysis and clinical subgroup identification: a retrospective observational study. Medicine (Baltimore) 99(15), e19555 (2020)CrossRef
4.
Zurück zum Zitat L. Sudarsky, Neurologic disorders of gait. Curr. Neurol. Neurosci. Rep. 1(4), 350–356 (2001)CrossRef L. Sudarsky, Neurologic disorders of gait. Curr. Neurol. Neurosci. Rep. 1(4), 350–356 (2001)CrossRef
5.
Zurück zum Zitat E.J. Harris, I.H. Khoo, E. Demircan, A survey of human gait-based artificial intelligence applications. Front. Robot. AI 8, 749274 (2021)CrossRef E.J. Harris, I.H. Khoo, E. Demircan, A survey of human gait-based artificial intelligence applications. Front. Robot. AI 8, 749274 (2021)CrossRef
7.
Zurück zum Zitat Y.-J. Lee, J.N. Liang, Characterizing intersection variability of butterfly diagram in post-stroke gait using Kernel density estimation. Gait Posture 76, 157–161 (2020)CrossRef Y.-J. Lee, J.N. Liang, Characterizing intersection variability of butterfly diagram in post-stroke gait using Kernel density estimation. Gait Posture 76, 157–161 (2020)CrossRef
8.
Zurück zum Zitat M.H. Lee et al., Learning to assess the quality of stroke rehabilitation exercises, in Proceedings of the 24th International Conference on Intelligent User Interfaces (2019) M.H. Lee et al., Learning to assess the quality of stroke rehabilitation exercises, in Proceedings of the 24th International Conference on Intelligent User Interfaces (2019)
9.
Zurück zum Zitat C. Flagg et al., Real-time streaming of gait assessment for Parkinson's disease, in Proceedings of the 14th ACM International Conference on Web Search and Data Mining (2021) C. Flagg et al., Real-time streaming of gait assessment for Parkinson's disease, in Proceedings of the 14th ACM International Conference on Web Search and Data Mining (2021)
10.
Zurück zum Zitat K. Kenney et al., Dementia after moderate-severe traumatic brain injury: coexistence of multiple proteinopathies. J. Neuropathol. Exp. Neurol. 77(1), 50–63 (2018)CrossRef K. Kenney et al., Dementia after moderate-severe traumatic brain injury: coexistence of multiple proteinopathies. J. Neuropathol. Exp. Neurol. 77(1), 50–63 (2018)CrossRef
11.
Zurück zum Zitat U. Bhattacharya et al., Step: spatial temporal graph convolutional networks for emotion perception from gaits, in Proceedings of the AAAI Conference on Artificial Intelligence (2020) U. Bhattacharya et al., Step: spatial temporal graph convolutional networks for emotion perception from gaits, in Proceedings of the AAAI Conference on Artificial Intelligence (2020)
12.
Zurück zum Zitat J. Fang et al., Depression prevalence in postgraduate students and its association with gait abnormality. IEEE Access 7, 174425–174437 (2019)CrossRef J. Fang et al., Depression prevalence in postgraduate students and its association with gait abnormality. IEEE Access 7, 174425–174437 (2019)CrossRef
13.
Zurück zum Zitat N. Zhao et al., See your mental state from your walk: recognizing anxiety and depression through Kinect-recorded gait data. PLoS ONE 14(5), e0216591 (2019)CrossRef N. Zhao et al., See your mental state from your walk: recognizing anxiety and depression through Kinect-recorded gait data. PLoS ONE 14(5), e0216591 (2019)CrossRef
14.
Zurück zum Zitat C. Cui et al., Simultaneous recognition and assessment of post-stroke hemiparetic gait by fusing kinematic, kinetic, and electrophysiological data. IEEE Trans. Neural Syst. Rehabil. Eng. 26(4), 856–864 (2018)CrossRef C. Cui et al., Simultaneous recognition and assessment of post-stroke hemiparetic gait by fusing kinematic, kinetic, and electrophysiological data. IEEE Trans. Neural Syst. Rehabil. Eng. 26(4), 856–864 (2018)CrossRef
15.
Zurück zum Zitat E. Sutkowska et al., Distribution of the highest plantar pressure regions in patients with diabetes and its association with peripheral neuropathy, gender, age, and BMI: one centre study. J. Diabetes Res. 2019 (2019) E. Sutkowska et al., Distribution of the highest plantar pressure regions in patients with diabetes and its association with peripheral neuropathy, gender, age, and BMI: one centre study. J. Diabetes Res. 2019 (2019)
16.
Zurück zum Zitat H. Maghdid et al., A Novel AI-Enabled Framework to Diagnose Coronavirus Covid 19 Using Smartphone Embedded Sensors: Design Study. arXiv 2020. arXiv preprint arXiv:2003.07434 (2003) H. Maghdid et al., A Novel AI-Enabled Framework to Diagnose Coronavirus Covid 19 Using Smartphone Embedded Sensors: Design Study. arXiv 2020. arXiv preprint arXiv:​2003.​07434 (2003)
17.
Zurück zum Zitat E.J. Harris, I.-H. Khoo, E. Demircan, A survey of human gait-based artificial intelligence applications. Front. Robot. AI 8, 749274 (2022)CrossRef E.J. Harris, I.-H. Khoo, E. Demircan, A survey of human gait-based artificial intelligence applications. Front. Robot. AI 8, 749274 (2022)CrossRef
18.
Zurück zum Zitat A.S. Alharthi, S.U. Yunas, K.B. Ozanyan, Deep learning for monitoring of human gait: a review. IEEE Sens. J. 19(21), 9575–9591 (2019)CrossRef A.S. Alharthi, S.U. Yunas, K.B. Ozanyan, Deep learning for monitoring of human gait: a review. IEEE Sens. J. 19(21), 9575–9591 (2019)CrossRef
19.
Zurück zum Zitat T.-H. Chen et al., Classification of high mental workload and emotional statuses via machine learning feature extractions in gait. Int. J. Ind. Ergon. 97, 103503 (2023)CrossRef T.-H. Chen et al., Classification of high mental workload and emotional statuses via machine learning feature extractions in gait. Int. J. Ind. Ergon. 97, 103503 (2023)CrossRef
20.
Zurück zum Zitat Y.-L. Yen et al., Recognition of walking directional intention employed ground reaction forces and center of pressure during gait initiation. Gait Posture 106, 23–27 (2023)CrossRef Y.-L. Yen et al., Recognition of walking directional intention employed ground reaction forces and center of pressure during gait initiation. Gait Posture 106, 23–27 (2023)CrossRef
21.
Zurück zum Zitat H. Prasanth et al., Wearable sensor-based real-time gait detection: a systematic review. Sensors 21(8), 2727 (2021)CrossRef H. Prasanth et al., Wearable sensor-based real-time gait detection: a systematic review. Sensors 21(8), 2727 (2021)CrossRef
22.
Zurück zum Zitat A.R. Anwary, H. Yu, M. Vassallo, Optimal foot location for placing wearable IMU sensors and automatic feature extraction for gait analysis. IEEE Sens. J. 18(6), 2555–2567 (2018)CrossRef A.R. Anwary, H. Yu, M. Vassallo, Optimal foot location for placing wearable IMU sensors and automatic feature extraction for gait analysis. IEEE Sens. J. 18(6), 2555–2567 (2018)CrossRef
23.
Zurück zum Zitat G.P. Panebianco et al., Analysis of the performance of 17 algorithms from a systematic review: influence of sensor position, analysed variable and computational approach in gait timing estimation from IMU measurements. Gait Posture 66, 76–82 (2018)CrossRef G.P. Panebianco et al., Analysis of the performance of 17 algorithms from a systematic review: influence of sensor position, analysed variable and computational approach in gait timing estimation from IMU measurements. Gait Posture 66, 76–82 (2018)CrossRef
24.
Zurück zum Zitat R.A. Felius et al., Reliability of IMU-based gait assessment in clinical stroke rehabilitation. Sensors 22(3), 908 (2022)CrossRef R.A. Felius et al., Reliability of IMU-based gait assessment in clinical stroke rehabilitation. Sensors 22(3), 908 (2022)CrossRef
25.
Zurück zum Zitat P. Khera, N. Kumar, Role of machine learning in gait analysis: a review. J. Med. Eng. Technol. 44(8), 441–467 (2020)CrossRef P. Khera, N. Kumar, Role of machine learning in gait analysis: a review. J. Med. Eng. Technol. 44(8), 441–467 (2020)CrossRef
26.
Zurück zum Zitat B. Hu et al., Machine learning algorithms based on signals from a single wearable inertial sensor can detect surface-and age-related differences in walking. J. Biomech. 71, 37–42 (2018)CrossRef B. Hu et al., Machine learning algorithms based on signals from a single wearable inertial sensor can detect surface-and age-related differences in walking. J. Biomech. 71, 37–42 (2018)CrossRef
27.
Zurück zum Zitat Y. Watanabe, M. Kimura, Gait identification and authentication using LSTM based on 3-axis accelerations of smartphone. Procedia Comput. Sci. 176, 3873–3880 (2020)CrossRef Y. Watanabe, M. Kimura, Gait identification and authentication using LSTM based on 3-axis accelerations of smartphone. Procedia Comput. Sci. 176, 3873–3880 (2020)CrossRef
28.
Zurück zum Zitat J. Bruinsma, R. Carloni, Imu-based deep neural networks: prediction of locomotor and transition intentions of an osseointegrated transfemoral amputee. IEEE Trans. Neural Syst. Rehabil. Eng. 29, 1079–1088 (2021)CrossRef J. Bruinsma, R. Carloni, Imu-based deep neural networks: prediction of locomotor and transition intentions of an osseointegrated transfemoral amputee. IEEE Trans. Neural Syst. Rehabil. Eng. 29, 1079–1088 (2021)CrossRef
29.
Zurück zum Zitat Y.-J. Lee, M.-Y. Wei, Y.-J. Chen, Multiple inertial measurement unit combination and location for recognizing general, fatigue, and simulated-fatigue gait. Gait Posture 96, 330–337 (2022)CrossRef Y.-J. Lee, M.-Y. Wei, Y.-J. Chen, Multiple inertial measurement unit combination and location for recognizing general, fatigue, and simulated-fatigue gait. Gait Posture 96, 330–337 (2022)CrossRef
30.
Zurück zum Zitat J.E. Boyd, J.J. Little, Biometric gait recognition, in Advanced Studies in Biometrics: Summer School on Biometrics, Alghero, Italy, June 2–6, 2003. Revised Selected Lectures and Papers (Springer, 2005), pp. 19–42 J.E. Boyd, J.J. Little, Biometric gait recognition, in Advanced Studies in Biometrics: Summer School on Biometrics, Alghero, Italy, June 2–6, 2003. Revised Selected Lectures and Papers (Springer, 2005), pp. 19–42
31.
Zurück zum Zitat A. Parashar et al., Advancements in artificial intelligence for biometrics: a deep dive into model-based gait recognition techniques. Eng. Appl. Artif. Intell. 130, 107712 (2024)CrossRef A. Parashar et al., Advancements in artificial intelligence for biometrics: a deep dive into model-based gait recognition techniques. Eng. Appl. Artif. Intell. 130, 107712 (2024)CrossRef
32.
Zurück zum Zitat Niyogi, Adelson, Analyzing and recognizing walking figures in XYT, in 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 1994) Niyogi, Adelson, Analyzing and recognizing walking figures in XYT, in 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 1994)
33.
Zurück zum Zitat M.D. Addlesee et al., The ORL active floor [sensor system]. IEEE Pers. Commun. 4(5), 35–41 (1997)CrossRef M.D. Addlesee et al., The ORL active floor [sensor system]. IEEE Pers. Commun. 4(5), 35–41 (1997)CrossRef
34.
Zurück zum Zitat J. Mäntyjärvi et al., Identifying users of portable devices from gait pattern with accelerometers. Acoust. Speech Signal Process. Proc. (ICASSP’05), ii/973–ii/976 (2005) J. Mäntyjärvi et al., Identifying users of portable devices from gait pattern with accelerometers. Acoust. Speech Signal Process. Proc. (ICASSP’05), ii/973–ii/976 (2005)
35.
Zurück zum Zitat P. Connor, A. Ross, Biometric recognition by gait: a survey of modalities and features. Comput. Vis. Image Underst. 167, 1–27 (2018)CrossRef P. Connor, A. Ross, Biometric recognition by gait: a survey of modalities and features. Comput. Vis. Image Underst. 167, 1–27 (2018)CrossRef
36.
Zurück zum Zitat R.D. Seely et al., The university of southampton multi-biometric tunnel and introducing a novel 3D gait dataset, in 2008 IEEE Second International Conference on Biometrics: Theory, Applications and Systems (IEEE, 2008) R.D. Seely et al., The university of southampton multi-biometric tunnel and introducing a novel 3D gait dataset, in 2008 IEEE Second International Conference on Biometrics: Theory, Applications and Systems (IEEE, 2008)
37.
Zurück zum Zitat V. Bijalwan, V.B. Semwal, T. Mandal, Fusion of multi-sensor-based biomechanical gait analysis using vision and wearable sensor. IEEE Sens. J. 21(13), 14213–14220 (2021)CrossRef V. Bijalwan, V.B. Semwal, T. Mandal, Fusion of multi-sensor-based biomechanical gait analysis using vision and wearable sensor. IEEE Sens. J. 21(13), 14213–14220 (2021)CrossRef
38.
Zurück zum Zitat A. Sepas-Moghaddam, A. Etemad, Deep gait recognition: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 45(1), 264–284 (2022)CrossRef A. Sepas-Moghaddam, A. Etemad, Deep gait recognition: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 45(1), 264–284 (2022)CrossRef
39.
Zurück zum Zitat A. Parashar et al., Data preprocessing and feature selection techniques in gait recognition: a comparative study of machine learning and deep learning approaches. Pattern Recogn. Lett. (2023) A. Parashar et al., Data preprocessing and feature selection techniques in gait recognition: a comparative study of machine learning and deep learning approaches. Pattern Recogn. Lett. (2023)
40.
Zurück zum Zitat M. Khaliluzzaman et al., Person recognition based on deep gait: a survey. Sensors 23(10), 4875 (2023)CrossRef M. Khaliluzzaman et al., Person recognition based on deep gait: a survey. Sensors 23(10), 4875 (2023)CrossRef
41.
Zurück zum Zitat M.B. Hasan et al., GaitGCN++: improving GCN-based gait recognition with part-wise attention and DropGraph. J. King Saud. Univ.-Comput. Inf. Sci. 35(7), 101641 (2023) M.B. Hasan et al., GaitGCN++: improving GCN-based gait recognition with part-wise attention and DropGraph. J. King Saud. Univ.-Comput. Inf. Sci. 35(7), 101641 (2023)
42.
Zurück zum Zitat F.M. Castro et al., AttenGait: gait recognition with attention and rich modalities. Pattern Recogn. 148, 110171 (2024)CrossRef F.M. Castro et al., AttenGait: gait recognition with attention and rich modalities. Pattern Recogn. 148, 110171 (2024)CrossRef
43.
Zurück zum Zitat A. Parashar et al., Real-time gait biometrics for surveillance applications: a review. Image Vis. Comput. 2023, 104784 (2023) A. Parashar et al., Real-time gait biometrics for surveillance applications: a review. Image Vis. Comput. 2023, 104784 (2023)
44.
Zurück zum Zitat Y. Feng, Y. Li, J. Luo, Learning effective gait features using LSTM, in 2016 23rd International Conference on Pattern Recognition (ICPR) (IEEE, 2016) Y. Feng, Y. Li, J. Luo, Learning effective gait features using LSTM, in 2016 23rd International Conference on Pattern Recognition (ICPR) (IEEE, 2016)
45.
Zurück zum Zitat T.K. Lee, M. Belkhatir, S. Sanei, A comprehensive review of past and present vision-based techniques for gait recognition. Multimedia Tools Appl. 72, 2833–2869 (2014)CrossRef T.K. Lee, M. Belkhatir, S. Sanei, A comprehensive review of past and present vision-based techniques for gait recognition. Multimedia Tools Appl. 72, 2833–2869 (2014)CrossRef
46.
Zurück zum Zitat J.L. Helbostad et al., Physical fatigue affects gait characteristics in older persons. J. Gerontol. A Biol. Sci. Med. Sci. 62(9), 1010–1015 (2007)CrossRef J.L. Helbostad et al., Physical fatigue affects gait characteristics in older persons. J. Gerontol. A Biol. Sci. Med. Sci. 62(9), 1010–1015 (2007)CrossRef
47.
Zurück zum Zitat A. Sakata, N. Takemura, Y. Yagi, Gait-based age estimation using multi-stage convolutional neural network. IPSJ Trans. Comput. Vis. Appl. 11, 1–10 (2019) A. Sakata, N. Takemura, Y. Yagi, Gait-based age estimation using multi-stage convolutional neural network. IPSJ Trans. Comput. Vis. Appl. 11, 1–10 (2019)
48.
Zurück zum Zitat J. Lu, Y.-P. Tan, Gait-based human age estimation. IEEE Trans. Inf. Forensics Secur. 5(4), 761–770 (2010)CrossRef J. Lu, Y.-P. Tan, Gait-based human age estimation. IEEE Trans. Inf. Forensics Secur. 5(4), 761–770 (2010)CrossRef
49.
Zurück zum Zitat Y. Makihara et al., Gait-based age estimation using a whole-generation gait database, in 2011 International Joint Conference on Biometrics (IJCB) (IEEE, 2011) Y. Makihara et al., Gait-based age estimation using a whole-generation gait database, in 2011 International Joint Conference on Biometrics (IJCB) (IEEE, 2011)
50.
Zurück zum Zitat E.L. Oliveira, C.A. Lima, S.M. Peres, Fusion of face and gait for biometric recognition: systematic literature review, in Proceedings of the XII Brazilian Symposium on Information Systems on Brazilian Symposium on Information Systems: Information Systems in the Cloud Computing Era, vol. 1 (2016) E.L. Oliveira, C.A. Lima, S.M. Peres, Fusion of face and gait for biometric recognition: systematic literature review, in Proceedings of the XII Brazilian Symposium on Information Systems on Brazilian Symposium on Information Systems: Information Systems in the Cloud Computing Era, vol. 1 (2016)
51.
Zurück zum Zitat Q. Shi et al., Deep learning enabled smart mats as a scalable floor monitoring system. Nat. Commun. 11(1), 4609 (2020)CrossRef Q. Shi et al., Deep learning enabled smart mats as a scalable floor monitoring system. Nat. Commun. 11(1), 4609 (2020)CrossRef
52.
Zurück zum Zitat Y.-J. Lee, C.-C. Wu, One step of gait information from sensing walking surface for personal identification. IEEE Sens. J. 23(5), 5243–5250 (2023)CrossRef Y.-J. Lee, C.-C. Wu, One step of gait information from sensing walking surface for personal identification. IEEE Sens. J. 23(5), 5243–5250 (2023)CrossRef
53.
Zurück zum Zitat J. Ajay et al., A pervasive and sensor-free deep learning system for Parkinsonian gait analysis, in 2018 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI) (IEEE, 2018) J. Ajay et al., A pervasive and sensor-free deep learning system for Parkinsonian gait analysis, in 2018 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI) (IEEE, 2018)
54.
Zurück zum Zitat A. Procházka et al., Bayesian classification and analysis of gait disorders using image and depth sensors of Microsoft Kinect. Digital Signal Process. 47, 169–177 (2015)CrossRef A. Procházka et al., Bayesian classification and analysis of gait disorders using image and depth sensors of Microsoft Kinect. Digital Signal Process. 47, 169–177 (2015)CrossRef
55.
Zurück zum Zitat F. Wahid et al., Classification of Parkinson’s disease gait using spatial-temporal gait features. IEEE J. Biomed. Health Inform. 19(6), 1794–1802 (2015)CrossRef F. Wahid et al., Classification of Parkinson’s disease gait using spatial-temporal gait features. IEEE J. Biomed. Health Inform. 19(6), 1794–1802 (2015)CrossRef
56.
Zurück zum Zitat Q. Ye, Y. Xia, Z. Yao, Classification of gait patterns in patients with neurodegenerative disease using adaptive neuro-fuzzy inference system. Comput. Math. Methods Med. 2018 (2018) Q. Ye, Y. Xia, Z. Yao, Classification of gait patterns in patients with neurodegenerative disease using adaptive neuro-fuzzy inference system. Comput. Math. Methods Med. 2018 (2018)
57.
Zurück zum Zitat S. Bilgin, The impact of feature extraction for the classification of amyotrophic lateral sclerosis among neurodegenerative diseases and healthy subjects. Biomed. Signal Process. Control 31, 288–294 (2017)CrossRef S. Bilgin, The impact of feature extraction for the classification of amyotrophic lateral sclerosis among neurodegenerative diseases and healthy subjects. Biomed. Signal Process. Control 31, 288–294 (2017)CrossRef
58.
Zurück zum Zitat B.-S. Lin et al., Automatic assessment system based on IMUs and machine learning for predicting berg balance scale. IEEE Sens. J. 22(20), 19919–19930 (2022)CrossRef B.-S. Lin et al., Automatic assessment system based on IMUs and machine learning for predicting berg balance scale. IEEE Sens. J. 22(20), 19919–19930 (2022)CrossRef
59.
Zurück zum Zitat A.A. Hulleck et al., Present and future of gait assessment in clinical practice: towards the application of novel trends and technologies. Front. Med. Technol. 4, 901331 (2022)CrossRef A.A. Hulleck et al., Present and future of gait assessment in clinical practice: towards the application of novel trends and technologies. Front. Med. Technol. 4, 901331 (2022)CrossRef
60.
Zurück zum Zitat F. Wang et al., Toward a passive low-cost in-home gait assessment system for older adults. IEEE J. Biomed. Health Inform. 17(2), 346–355 (2013)CrossRef F. Wang et al., Toward a passive low-cost in-home gait assessment system for older adults. IEEE J. Biomed. Health Inform. 17(2), 346–355 (2013)CrossRef
61.
Zurück zum Zitat E.E. Stone, M. Skubic, Capturing habitual, in-home gait parameter trends using an inexpensive depth camera, in 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 2012) E.E. Stone, M. Skubic, Capturing habitual, in-home gait parameter trends using an inexpensive depth camera, in 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 2012)
62.
Zurück zum Zitat F. Young et al., IoT-enabled gait assessment: the next step for habitual monitoring. Sensors 23(8), 4100 (2023)CrossRef F. Young et al., IoT-enabled gait assessment: the next step for habitual monitoring. Sensors 23(8), 4100 (2023)CrossRef
63.
Zurück zum Zitat R. Hoffmann et al., Detecting walking challenges in gait patterns using a capacitive sensor floor and recurrent neural networks. Sensors 21(4), 1086 (2021)CrossRef R. Hoffmann et al., Detecting walking challenges in gait patterns using a capacitive sensor floor and recurrent neural networks. Sensors 21(4), 1086 (2021)CrossRef
64.
Zurück zum Zitat D.J. Cook, M. Schmitter-Edgecombe, P. Dawadi, Analyzing activity behavior and movement in a naturalistic environment using smart home techniques. IEEE J. Biomed. Health Inform. 19(6), 1882–1892 (2015)CrossRef D.J. Cook, M. Schmitter-Edgecombe, P. Dawadi, Analyzing activity behavior and movement in a naturalistic environment using smart home techniques. IEEE J. Biomed. Health Inform. 19(6), 1882–1892 (2015)CrossRef
65.
Zurück zum Zitat Y.-L. Hsu et al., Design and implementation of a smart home system using multisensor data fusion technology. Sensors 17(7), 1631 (2017)CrossRef Y.-L. Hsu et al., Design and implementation of a smart home system using multisensor data fusion technology. Sensors 17(7), 1631 (2017)CrossRef
66.
Zurück zum Zitat A. Cernian et al., PatientDataChain: a blockchain-based approach to integrate personal health records. Sensors 20(22), 6538 (2020)CrossRef A. Cernian et al., PatientDataChain: a blockchain-based approach to integrate personal health records. Sensors 20(22), 6538 (2020)CrossRef
67.
Zurück zum Zitat D.D. Taralunga, B.C. Florea, A blockchain-enabled framework for mhealth systems. Sensors 21(8), 2828 (2021)CrossRef D.D. Taralunga, B.C. Florea, A blockchain-enabled framework for mhealth systems. Sensors 21(8), 2828 (2021)CrossRef
68.
Zurück zum Zitat A. Bodepudi, M. Reddy, Cloud-based gait biometric identification in smart home ecosystem. Int. J. Intell. Autom. Comput. 4(1), 49–59 (2021) A. Bodepudi, M. Reddy, Cloud-based gait biometric identification in smart home ecosystem. Int. J. Intell. Autom. Comput. 4(1), 49–59 (2021)
Metadaten
Titel
Smart Gait Healthcare Applications: Walking Status and Gait Biometrics
verfasst von
Tin-Chih Toly Chen
Yun-Ju Lee
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-59443-4_4