Skip to main content

2024 | OriginalPaper | Buchkapitel

14. Covalent, Metallic, and Secondary Bonding

verfasst von : Rick Ubic

Erschienen in: Crystallography and Crystal Chemistry

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter introduces the concepts of bonding, coordination, and packing fraction. We start with covalent bonding, encompassing both valence bond theory and molecular orbital theory, then move to metallic bonding, the Hume-Rothery Rules, and band theory; and we finish with Van der Waals forces and hydrogen bonding. A biographical sketch of Johannes Diderik van der Waals is also included.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
The valence level is the outermost electron shell of an atom, containing valence electrons which are accessible for the formation of chemical bonds.
 
2
Electrons are delocalized if they are associated with more than one bond. Valence bond theory does not allow for bond delocalization, which is one of its weaknesses.
 
3
Paramagnetic materials are weakly attracted by external magnetic fields whereas diamagnetic materials are repelled by magnetic fields.
 
4
As for single atoms, the first superscript in the molecular notation is the multiplicity (the number of unpaired electrons plus one). Instead of the symbols S, P, D, or F to indicate a total orbital angular momentum quantum number equal to 0, 1, 2, or 3, we use the Greek equivalents, Σ, Π, Δ, or Φ. The subscript “g” indicates the state’s parity. If inverting the electron’s position with respect to the molecular mass centre leaves the wavefunction unchanged, it is labeled “g” for gerade (even); otherwise, it is “u” for ungerade (odd). Finally, for the Σ states, a superscript is used to indicate whether the state is symmetric, “+”, or antisymmetric, “−”, upon reflection through any plane containing the internuclear axis.
 
5
The ultimate tensile strength, or simply tensile strength, is the maximum stress that a material can withstand before breaking while being stretched or pulled.
 
6
Remember, metallic bonding isn’t fully broken until the metal boils.
 
7
More strictly, we mean here only recoverable, or elastic, deformation, as this kind of deformation involves only the stretching/compression of atomic spacings.
 
8
Hume-Rothery earned a first-class honours degree in chemistry at Oxford and a PhD from the Royal School of Mines (now part of Imperial College London) despite being totally deaf from the age of 18. He went on to found the Department of Metallurgy (which is now the Department of Materials) at the University of Oxford in the mid-1950s. One of his students there was William “Bill” Pearson.
 
9
In 1819, Pierre Louis Dulong and Alexis Thérèse Petit found that the heat capacity of a mole of many solid elements is about 3R or ~ 25 J/K (the gas constant, R, had not yet been defined).
 
10
A direct semiconductor is one for which the peak in the valence-band energy aligns with the minimum in the conduction-band energy. An indirect semiconductor is one for which the peak in the valence-band energy does not align with the minimum in the conduction-band energy.
 
11
Not to be confused with metalloids, which, although there is no standard definition, are typically described as elements with properties between (or a mixture of) those of metals and nonmetals. The six most commonly recognised metalloids include B, Si, Ge, As, Sb, and Te. Other elements sometimes included are C, Al, Se, Po, and At. Although there is some overlap in the sets of semimetals and metalloids, the terms are not synonymous. Unlike metalloids, semimetals can also be compounds, like HgTe; and unlike metals, semimetals have both electron and hole charge carriers but typically in smaller numbers than in a metal. The electrical properties of semimetals are between those of metals and semiconductors.
 
12
Strongly correlated materials are defined by the fact that the behaviour of their electrons cannot be described effectively without considering interaction. Theoretical models of the electronic structure of these strongly correlated materials must include electronic correlation (interaction) to be accurate. Such materials can show unusual electronic or magnetic properties, including multiferroic behaviour, metal-insulator transitions, high-Tc superconductivity, heavy-fermion behaviour, half-metallicity, and spin-charge separation. Many transition-metal oxides fall into this category.
 
13
Charles formulated the original law in unpublished work during the 1780s. Joseph Louis Gay-Lussac mentions it in his “Recherches sur la dilatation des gaz et des vapeurs” of 1802.
 
14
Clapeyron never explains why he choose the letter R for his constant, and some have seen it as an homage to Henri Victor Regnault, who provided much of the empirical data for its derivation (although it probably just meant rapport “ratio.”)
 
15
A mole of gas contains NA molecules/atoms, where NA = 6.02214076 × 1023.
 
16
The term “ideal gas” has been introduced by Rudolf Clausius in 1864. [35]
 
17
There is some debate as to whether Van der Waals forces can be said to include forces which act intramolecularly (between two different parts of the same molecule) as well as intermolecularly; however, it is probably logical to argue that a Van der Waals force should be one which can be described by the Van der Waals equation (Eq. 14.22), and specifically the constant a, which is only valid for intermolecular interactions. In this sense, all Van der Waals solids and even graphite can be considered molecular solids.
 
18
In Dutch names, the first “tussenvoegsel” (in this case “van”) should be lowercase only if it is preceded by the first name, so we would refer to Johannes Diderik van der Waals but Van der Waals forces. German literature of the time referred to “van der Waalsschen Kräfte” or “van der Waalsschen Kohäsionskräfte,” so “van der Waals forces” seems to have been the accepted form then, but that might have simply been in keeping with the usage of the German “von,” which is only ever capitalized when it occurs at the beginning of a sentence.
 
19
Note that this is the only definition for Van der Waals forces given in some texts.
 
20
Helium has the lowest melting point of any element. It can only be solidified below 1 K and even then only by simultaneously applying a pressure of more than 25 atm. Given these extreme conditions, there is significant error in measurements and so no general agreement on Tm. The melting of He has not been shown to require heat, i.e., it is not endothermic; however, there is no evidence to suggest that it is exothermic either. Its ΔHf seems to be about 0.
 
21
And only about half of all hydrogen bonds are broken upon vaporization
 
Literatur
1.
Zurück zum Zitat I. Newton, Opticks, second edition ed., London: W. and J. Innys, 1718. I. Newton, Opticks, second edition ed., London: W. and J. Innys, 1718.
2.
Zurück zum Zitat J. T. Desaeguliers, A Dissertation Concerning Electricity, London: W. Innys and T. Longman, 1742. J. T. Desaeguliers, A Dissertation Concerning Electricity, London: W. Innys and T. Longman, 1742.
3.
Zurück zum Zitat J. J. Berzelius, Essai sur la Théorie des Proportions Chimiques et sur l’Influence Chimique d’Électricité, Paris: Chez Méquignon-Marvis, 1819. J. J. Berzelius, Essai sur la Théorie des Proportions Chimiques et sur l’Influence Chimique d’Électricité, Paris: Chez Méquignon-Marvis, 1819.
4.
Zurück zum Zitat E. Frankland, “Contributions to the Notation of Organic and Inorganic Compounds,” Journal of the Chemical Society, vol. 19, pp. 372–395, 1866.CrossRef E. Frankland, “Contributions to the Notation of Organic and Inorganic Compounds,” Journal of the Chemical Society, vol. 19, pp. 372–395, 1866.CrossRef
5.
Zurück zum Zitat N. Bohr, “On the Composition of Atoms and Molecules,” Philosophical Magazine, vol. 26, no. 151, pp. 1–25, 1913. N. Bohr, “On the Composition of Atoms and Molecules,” Philosophical Magazine, vol. 26, no. 151, pp. 1–25, 1913.
6.
Zurück zum Zitat N. Bohr, “On the Composition of Atoms and Molecules,” Philosophical Magazine, vol. 26, no. 153, pp. 476–502, 1913. N. Bohr, “On the Composition of Atoms and Molecules,” Philosophical Magazine, vol. 26, no. 153, pp. 476–502, 1913.
7.
Zurück zum Zitat N. Bohr, “On the Composition of Atoms and Molecules,” Philosophical Magazine, vol. 26, no. 155, pp. 857–875, 1913. N. Bohr, “On the Composition of Atoms and Molecules,” Philosophical Magazine, vol. 26, no. 155, pp. 857–875, 1913.
8.
Zurück zum Zitat G. N. Lewis, “The Atom and the Molecule,” Journal of the American Chemical Society, vol. 38, no. 4, pp. 762–785, 1916.CrossRef G. N. Lewis, “The Atom and the Molecule,” Journal of the American Chemical Society, vol. 38, no. 4, pp. 762–785, 1916.CrossRef
9.
Zurück zum Zitat R. Abegg, “Die Valenz und das Periodische System. Versuch einer Theorie der Molekularverbindungen,” Zeitschrift für Anorganische Chemie , vol. 39, no. 3, pp. 330–380, 1904.CrossRef R. Abegg, “Die Valenz und das Periodische System. Versuch einer Theorie der Molekularverbindungen,” Zeitschrift für Anorganische Chemie , vol. 39, no. 3, pp. 330–380, 1904.CrossRef
10.
Zurück zum Zitat J. J. Thomson, “Rays of positive electricity,” Philosophical Magazine, vol. 14, no. 81, pp. 359–364, 1907. J. J. Thomson, “Rays of positive electricity,” Philosophical Magazine, vol. 14, no. 81, pp. 359–364, 1907.
11.
Zurück zum Zitat W. C. Bray and G. E. K. Branch, “Valence and Tautomerism,” Journal of the American Chemical Society, vol. 35, pp. 1440–1455, 1913.CrossRef W. C. Bray and G. E. K. Branch, “Valence and Tautomerism,” Journal of the American Chemical Society, vol. 35, pp. 1440–1455, 1913.CrossRef
12.
Zurück zum Zitat J. J. Thomson, “The Forces Between Atoms and Chemical Affinity,” Philosophical Magazone, vol. 27, no. 157–62, pp. 757–789, 1914. J. J. Thomson, “The Forces Between Atoms and Chemical Affinity,” Philosophical Magazone, vol. 27, no. 157–62, pp. 757–789, 1914.
13.
Zurück zum Zitat W. C. Arsem, “A Theory of Valency and Molecular Structure,” Journal of the American Chemical Society, vol. 36, pp. 1655–1675, 1914.CrossRef W. C. Arsem, “A Theory of Valency and Molecular Structure,” Journal of the American Chemical Society, vol. 36, pp. 1655–1675, 1914.CrossRef
14.
Zurück zum Zitat I. Langmuir, “The Structure of Atoms and the Octet Theory of Valence,” Proceedings of trhe National Academy of Sciences, vol. 5, pp. 252–259, 1919.CrossRef I. Langmuir, “The Structure of Atoms and the Octet Theory of Valence,” Proceedings of trhe National Academy of Sciences, vol. 5, pp. 252–259, 1919.CrossRef
15.
Zurück zum Zitat I. Langmuir, “The Arrangement of Electrons in Atoms and Molecules,” Journal of the American Chemical Society, vol. 41, pp. 868–934, 1919.CrossRef I. Langmuir, “The Arrangement of Electrons in Atoms and Molecules,” Journal of the American Chemical Society, vol. 41, pp. 868–934, 1919.CrossRef
16.
Zurück zum Zitat E. Schrödinger, "Quantisierung als Eigenwertproblem," Annalen der Physik, vol. 79, p. 361–376, 1926.CrossRef E. Schrödinger, "Quantisierung als Eigenwertproblem," Annalen der Physik, vol. 79, p. 361–376, 1926.CrossRef
17.
Zurück zum Zitat W. Heitler and F. London, “Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik,” Zeitschrift für Physik, vol. 44, p. 455–472, 1927.CrossRef W. Heitler and F. London, “Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik,” Zeitschrift für Physik, vol. 44, p. 455–472, 1927.CrossRef
18.
Zurück zum Zitat F. London, “Zur Quantentheorie der homoopolaren Valenzzahlen,” Zeitschrift für Physik, vol. 46, no. 7–8, pp. 455–477, 1928.CrossRef F. London, “Zur Quantentheorie der homoopolaren Valenzzahlen,” Zeitschrift für Physik, vol. 46, no. 7–8, pp. 455–477, 1928.CrossRef
19.
Zurück zum Zitat L. Pauling, The Nature of the Chemical Bond, Ithaca, NY: Cornell University Press, 1939. L. Pauling, The Nature of the Chemical Bond, Ithaca, NY: Cornell University Press, 1939.
20.
Zurück zum Zitat L. Pauling, “The Nature of the Chemical Bond. IV. The Energy of Single Bonds and the Relative Electronegativity of Atoms,” Journal of the American Chemical Society, vol. 54, no. 9, pp. 3570–3582, 1932.CrossRef L. Pauling, “The Nature of the Chemical Bond. IV. The Energy of Single Bonds and the Relative Electronegativity of Atoms,” Journal of the American Chemical Society, vol. 54, no. 9, pp. 3570–3582, 1932.CrossRef
21.
Zurück zum Zitat G. N. Lewis, Valence and the Structure of Atoms and Molecules; American Chemical Society Monograph Series, New York: The Chemical Catalog Company, 1923. G. N. Lewis, Valence and the Structure of Atoms and Molecules; American Chemical Society Monograph Series, New York: The Chemical Catalog Company, 1923.
22.
Zurück zum Zitat N. W. Ashcroft and N. D. Mermin, Solid State Physics, Philadelphia, PA: Saunders College, 1976. N. W. Ashcroft and N. D. Mermin, Solid State Physics, Philadelphia, PA: Saunders College, 1976.
23.
Zurück zum Zitat R. Boyle, A Defence of the Doctrine Touching the Spring and Weight of the Air, London: Thomas Robinson, 1662. R. Boyle, A Defence of the Doctrine Touching the Spring and Weight of the Air, London: Thomas Robinson, 1662.
24.
Zurück zum Zitat J. L. Gay-Lussac, “Sur la combinaison des substances gazeuses, les unes avec les autres,” Mémoires de la Société de physique et de chimie de la Société d’Arcueil, vol. 2, pp. 207–234, 1809. J. L. Gay-Lussac, “Sur la combinaison des substances gazeuses, les unes avec les autres,” Mémoires de la Société de physique et de chimie de la Société d’Arcueil, vol. 2, pp. 207–234, 1809.
25.
Zurück zum Zitat É. Clapeyron, “Mémoire sur la puissance motrice de la chaleur,” Journal de l’École Polytechnique, vol. 14, no. 23, pp. 153–190, 1834. É. Clapeyron, “Mémoire sur la puissance motrice de la chaleur,” Journal de l’École Polytechnique, vol. 14, no. 23, pp. 153–190, 1834.
26.
Zurück zum Zitat A. Avagadro, “Essai d’une manière de déterminer les masses relatives des molécules élémentaires des corps, et les proportions selon lesquelles elles entrent dans ces combinations,” Journal de Physique, de Chimie et d’Histoire naturelle, vol. 73, pp. 58–76, 1811. A. Avagadro, “Essai d’une manière de déterminer les masses relatives des molécules élémentaires des corps, et les proportions selon lesquelles elles entrent dans ces combinations,” Journal de Physique, de Chimie et d’Histoire naturelle, vol. 73, pp. 58–76, 1811.
27.
Zurück zum Zitat A. F. Horstmann, “Theorie der Dissociation,” Annalen der Chemie, vol. 170, no. 1–2, pp. 192–210, 1873. A. F. Horstmann, “Theorie der Dissociation,” Annalen der Chemie, vol. 170, no. 1–2, pp. 192–210, 1873.
28.
Zurück zum Zitat D. Mendeleef, “Mendeleef’s Researches on Mariotte’s Law,” Nature, vol. 15, p. 498–500, 1877.CrossRef D. Mendeleef, “Mendeleef’s Researches on Mariotte’s Law,” Nature, vol. 15, p. 498–500, 1877.CrossRef
29.
Zurück zum Zitat W. H. Keesom, “Die van der Waalsschen Kohäsionskräfte,” Physikalische Zeitschrift, vol. 22, pp. 129–141, 1921. W. H. Keesom, “Die van der Waalsschen Kohäsionskräfte,” Physikalische Zeitschrift, vol. 22, pp. 129–141, 1921.
30.
Zurück zum Zitat W. H. Keesom, “Die van der Waalsschen Kohäsionskräfte . Berichtigung,” Physikalische Zeitschrift, vol. 22, pp. 643–644, 1921. W. H. Keesom, “Die van der Waalsschen Kohäsionskräfte . Berichtigung,” Physikalische Zeitschrift, vol. 22, pp. 643–644, 1921.
31.
Zurück zum Zitat P. Debye, “Die van der Waalsschen Kohäsionskräfte,” Physikalische Zeitschrift, vol. 21, pp. 178–187, 1920. P. Debye, “Die van der Waalsschen Kohäsionskräfte,” Physikalische Zeitschrift, vol. 21, pp. 178–187, 1920.
32.
Zurück zum Zitat P. Debye, “Molekülkräfte und ihre elektrische Deutung,” Physikalische Zeitschrift, vol. 22, pp. 302–308, 1921. P. Debye, “Molekülkräfte und ihre elektrische Deutung,” Physikalische Zeitschrift, vol. 22, pp. 302–308, 1921.
33.
Zurück zum Zitat R. K. Eisenschitz and F. W. London, “Über das Verhältnis der van der Waalsschen Kräfte zu den homöopolaren Bindungskräften,” Zeitschrift für Physik, vol. 60, no. 7–8, pp. 491–527, 1930.CrossRef R. K. Eisenschitz and F. W. London, “Über das Verhältnis der van der Waalsschen Kräfte zu den homöopolaren Bindungskräften,” Zeitschrift für Physik, vol. 60, no. 7–8, pp. 491–527, 1930.CrossRef
34.
Zurück zum Zitat W. L. Jolly, From retorts to lasers: The story of chemistry at Berkeley, Berkeley: College of Chemistry, University of California, 1987. W. L. Jolly, From retorts to lasers: The story of chemistry at Berkeley, Berkeley: College of Chemistry, University of California, 1987.
35.
Zurück zum Zitat R. Clausius, The Mechanical Theory of Heat, London: Van Hoorst, 1867, pp. 14–80. R. Clausius, The Mechanical Theory of Heat, London: Van Hoorst, 1867, pp. 14–80.
Metadaten
Titel
Covalent, Metallic, and Secondary Bonding
verfasst von
Rick Ubic
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-49752-0_14

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.