Skip to main content

2024 | OriginalPaper | Buchkapitel

15. Ionic Bonding

verfasst von : Rick Ubic

Erschienen in: Crystallography and Crystal Chemistry

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Here we introduce the concept of ionic bonding, including electronegativity, the Madelung constant, lattice energy, the Born Haber cycle, and Pauling’s Rules. The chapter ends with the empirical application of Fajans’s Rules to estimate the ionic fraction of bonds and a comparison between ionic and covalent bond strengths. Brief biographies of Erwin Madelung, Max Born, and Linus Pauling are also included.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
He is also credited with the discovery of cerium (Ce) and selenium (Se) and being the first to isolate silicon (Si) and thorium (Th).
 
2
which means that χ, as derived by Pauling, has implicit units of eV½
 
3
His derived value of Eion for the C-I bond also didn’t match the calculated value, but as that was inexplicably negative, Pauling wrote the discrepancy off as experimental error.
 
4
the energy change that results from adding an electron to an isolated atom.
 
5
In 1930, Mayer married Maria Goeppert, who was a student of Max Born’s. She won the Nobel Prize in Physics in 1963, becoming only the second woman to do so (the first was Marie Curie 60 years earlier).
 
6
Some older texts give this equation in cgs (Gaussian) units and so omit the Coulomb constant (4πε0).
 
7
Lattice energy, ΔE, and lattice enthalpy, ΔH, are related but distinct concepts. Both are measures of the strength of the forces between the ions in an ionic solid. Specifically, lattice energy is the energy required to separate an ionic solid into gaseous ions. It is the heat given off or absorbed when a reaction is run at constant volume. Lattice enthalpy further takes into account that work must be performed against an outer pressure, P, such that ΔE = ΔHPΔV, where ΔV is the change in volume. Enthalpy is the total energy of a system that can be converted into heat, and lattice enthalpy is the heat given off or absorbed when an ionic solid is separated into gaseous ions at constant pressure. Accordingly, the difference between ΔE and ΔH is small for reactions involving only liquids and solids because there is little if any change in volume during the reaction; however, the difference can be significant for reactions that involve gases and/or high pressures, especially if the reaction involves a change in the amount of gas. The sign of ΔH determines whether a reaction is exothermic (ΔH < 0) or endothermic (ΔH > 0).
 
8
This means that bonds aren’t completely broken even upon melting.
 
9
These are the radii which multivalent ions would have if they were to retain their actual electron distributions but interact as if they were univalent. According to Pauling, runivalent = rmultivalent Z2/(n-1) where Z is the charge and n is the Born exponent.
 
10
There are actually two other polymorphs of TiO2, namely anatase and brookite, but both are metastable in ambient conditions. There are another five high-pressure phases as well.
 
11
Experimental dipole moments are only available for molecular (gas phase) diatomic molecules.
 
12
If you have never seen two tipsy chemists settling this argument in a barroom brawl, then you’re not going to the right pubs.
 
13
Arnold Somerfield never won a Nobel Prize himself, although he was nominated no fewer than 81 times! He was also the doctoral advisor for at least six future Nobel laureates (including Pauling, Heisenberg, Pauli, Debye, Bethe, and Rabi) – more than anyone else in history.
 
14
Of course, this means that there were no oxides in the dataset, although these equations are often applied (erroneously) to oxides.
 
15
As we have already seen, most materials scientists would consider ionic/covalent bonds broken upon melting (rather than requiring boiling), and we could in fact just as easily use melting temperatures here.
 
Literatur
1.
Zurück zum Zitat A. Avagadro, “Idées sur l’acidité et l’alcalinité,” Journal de Physique, de Chimie, d’Histoire Naturelle et des Arts, vol. 69, pp. 142–148, 1809. A. Avagadro, “Idées sur l’acidité et l’alcalinité,” Journal de Physique, de Chimie, d’Histoire Naturelle et des Arts, vol. 69, pp. 142–148, 1809.
2.
Zurück zum Zitat J. J. Berzelius, “Essai sur la nomenclature chimique,” Journal de Physique, vol. 73, p. 253–286, 1811. J. J. Berzelius, “Essai sur la nomenclature chimique,” Journal de Physique, vol. 73, p. 253–286, 1811.
3.
Zurück zum Zitat J. J. Thomson, “Cathode Rays,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 44, p. 293–316, 1897.CrossRef J. J. Thomson, “Cathode Rays,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 44, p. 293–316, 1897.CrossRef
4.
Zurück zum Zitat A. Avagadro, “Réflexions sur la théorie electro-chimique de M. Berzelius,” Annales de chimie, vol. 87, pp. 286–292, 1813. A. Avagadro, “Réflexions sur la théorie electro-chimique de M. Berzelius,” Annales de chimie, vol. 87, pp. 286–292, 1813.
5.
Zurück zum Zitat J. J. Berzelius, Lehrbuch der Chemie, Dresden: Arnoldischen Buchhandlung, 1823. J. J. Berzelius, Lehrbuch der Chemie, Dresden: Arnoldischen Buchhandlung, 1823.
6.
Zurück zum Zitat W. Kossel, „Über Molekülbildung als Frage des Atombaus,“ Annalen der Physik, vol. 49, no. 3, pp. 229–362, 1916.CrossRef W. Kossel, „Über Molekülbildung als Frage des Atombaus,“ Annalen der Physik, vol. 49, no. 3, pp. 229–362, 1916.CrossRef
7.
Zurück zum Zitat G. N. Lewis, “The Atom and the Molecule,” Journal of the American Chemical Society, vol. 38, p. 762–785, 1916.CrossRef G. N. Lewis, “The Atom and the Molecule,” Journal of the American Chemical Society, vol. 38, p. 762–785, 1916.CrossRef
8.
Zurück zum Zitat L. Pauling, “The Nature of the Chemical Bond. IV. The Energy of Single Bonds and the Relative Electronegativity of Atoms,” Journal of the American Chemical Society, vol. 54, no. 9, pp. 3570-3582, 1932.CrossRef L. Pauling, “The Nature of the Chemical Bond. IV. The Energy of Single Bonds and the Relative Electronegativity of Atoms,” Journal of the American Chemical Society, vol. 54, no. 9, pp. 3570-3582, 1932.CrossRef
9.
Zurück zum Zitat R. S. Mulliken, “A New Electroaffinity Scale; Together with Data on Valence States and on Valence Ionization Potentials and Electron Affinities,” Journal of Chemical Physics, vol. 2, no. 11, p. 782–793, 1934.CrossRef R. S. Mulliken, “A New Electroaffinity Scale; Together with Data on Valence States and on Valence Ionization Potentials and Electron Affinities,” Journal of Chemical Physics, vol. 2, no. 11, p. 782–793, 1934.CrossRef
10.
Zurück zum Zitat L. Pauling, The Nature of the Chemical Bond, Ithaca, NY: Cornell University Press, 1939. L. Pauling, The Nature of the Chemical Bond, Ithaca, NY: Cornell University Press, 1939.
11.
Zurück zum Zitat H. H. Claassen, H. Selig and J. G. Malm, “Xenon Tetrafluoride,” Journal of the American Chemical Society, vol. 84, no. 18, p. 3593, 1962.CrossRef H. H. Claassen, H. Selig and J. G. Malm, “Xenon Tetrafluoride,” Journal of the American Chemical Society, vol. 84, no. 18, p. 3593, 1962.CrossRef
12.
Zurück zum Zitat R. Hoppe, W. Dähne, H. Mattauch and K. Rödder, “Fluorination of Xenon,” Angewandte Chemie International Edition, vol. 1, no. 11, p. 599, 1962.CrossRef R. Hoppe, W. Dähne, H. Mattauch and K. Rödder, “Fluorination of Xenon,” Angewandte Chemie International Edition, vol. 1, no. 11, p. 599, 1962.CrossRef
13.
Zurück zum Zitat A. L. Allred, “Electronegativity values from thermochemical data,” Journal of Inorganic and Nuclear Chemistry, vol. 17, p. 215–221, 1961.CrossRef A. L. Allred, “Electronegativity values from thermochemical data,” Journal of Inorganic and Nuclear Chemistry, vol. 17, p. 215–221, 1961.CrossRef
14.
Zurück zum Zitat A. L. Allred and E. G. Rochow, “A scale of electronegativity based on electrostatic force,” Journal of Inorganic and Nuclear Chemistry, vol. 5, no. 4, p. 264–268, 1958.CrossRef A. L. Allred and E. G. Rochow, “A scale of electronegativity based on electrostatic force,” Journal of Inorganic and Nuclear Chemistry, vol. 5, no. 4, p. 264–268, 1958.CrossRef
15.
Zurück zum Zitat S. S. Batsanov, “Dielectric methods of studying the chemical bond and the concept of electronegativity,” Russian Chemical Reviews, vol. 51, p. 684–697, 1982.CrossRef S. S. Batsanov, “Dielectric methods of studying the chemical bond and the concept of electronegativity,” Russian Chemical Reviews, vol. 51, p. 684–697, 1982.CrossRef
16.
Zurück zum Zitat R. T. Sanderson, “Electronegativity and bond energy,” Journal of the American Chemical Society, vol. 105, no. 8, p. 2259–2261, 1983.CrossRef R. T. Sanderson, “Electronegativity and bond energy,” Journal of the American Chemical Society, vol. 105, no. 8, p. 2259–2261, 1983.CrossRef
17.
Zurück zum Zitat L. C. Allen, “Electronegativity is the average one-electron energy of the valence-shell electrons in ground-state free atoms,” Journal of the American Chemical Ssociety, vol. 111, p. 9003–9014, 1989.CrossRef L. C. Allen, “Electronegativity is the average one-electron energy of the valence-shell electrons in ground-state free atoms,” Journal of the American Chemical Ssociety, vol. 111, p. 9003–9014, 1989.CrossRef
18.
Zurück zum Zitat C. Antardini and A. R. Oganov, “Thermochemical electronegativities of the elements,” Nature Communications, vol. 12, p. 2087, 2021.CrossRef C. Antardini and A. R. Oganov, “Thermochemical electronegativities of the elements,” Nature Communications, vol. 12, p. 2087, 2021.CrossRef
19.
Zurück zum Zitat H. M. Evjen, “On the stability of certain heteropolar crystals,” Physical Review, vol. 39, no. 4, pp. 675–687, 1932.CrossRef H. M. Evjen, “On the stability of certain heteropolar crystals,” Physical Review, vol. 39, no. 4, pp. 675–687, 1932.CrossRef
20.
Zurück zum Zitat M. Born and A. Landé, “Kristallgitter und Bohrsches Atommodell (Crystal lattice and Bohr’s atomic model),” Verhandlungen der Deutschen Physikalischen Gesellschaft, vol. 20, pp. 202–209, 1918. M. Born and A. Landé, “Kristallgitter und Bohrsches Atommodell (Crystal lattice and Bohr’s atomic model),” Verhandlungen der Deutschen Physikalischen Gesellschaft, vol. 20, pp. 202–209, 1918.
21.
Zurück zum Zitat M. Born, “Eine Thermochemische Anwendung der Gittertheorie (A Thermochemical Application of the Lattice Theory),” Verhandlungen der Deutschen Physikalischen Gesellschaft, vol. 21, pp. 13–24, 1919. M. Born, “Eine Thermochemische Anwendung der Gittertheorie (A Thermochemical Application of the Lattice Theory),” Verhandlungen der Deutschen Physikalischen Gesellschaft, vol. 21, pp. 13–24, 1919.
22.
Zurück zum Zitat M. Born and J. E. Mayer, “Zur Gittertheorie der Ionenkristalle (On the Lattice Theory of Ionic Crystals),” Zeitschrift für Physik, vol. 75, no. 1-2, pp. 1–18, 1932.CrossRef M. Born and J. E. Mayer, “Zur Gittertheorie der Ionenkristalle (On the Lattice Theory of Ionic Crystals),” Zeitschrift für Physik, vol. 75, no. 1-2, pp. 1–18, 1932.CrossRef
23.
Zurück zum Zitat A. F. Kapustinskii, “Lattice energy of ionic crystals,” Quarterly Reviews, Chemical Society. Royal Society of Chemistry, vol. 10, no. 3, p. 283–294, 1956. A. F. Kapustinskii, “Lattice energy of ionic crystals,” Quarterly Reviews, Chemical Society. Royal Society of Chemistry, vol. 10, no. 3, p. 283–294, 1956.
24.
Zurück zum Zitat R. B. Heslop and K. Jones, Inorganic Chemistry: A Guide to Advanced Study, Amsterdam: Elsevier, 1976, p. 123. R. B. Heslop and K. Jones, Inorganic Chemistry: A Guide to Advanced Study, Amsterdam: Elsevier, 1976, p. 123.
25.
Zurück zum Zitat M. Born, “Die elektronenaffinit ̈at der Halogenatome,” Verhandlungen der Deutschen Physikalischen Gesellschaft, vol. 21, pp. 679–685, 1919. M. Born, “Die elektronenaffinit ̈at der Halogenatome,” Verhandlungen der Deutschen Physikalischen Gesellschaft, vol. 21, pp. 679–685, 1919.
26.
Zurück zum Zitat F. Haber, “Betrachtungen zur Theorie der Wärmetönungen,” Verhandlungen der Deutschen Physikalischen Gesellschaft, vol. 21, pp. 750–768, 1919. F. Haber, “Betrachtungen zur Theorie der Wärmetönungen,” Verhandlungen der Deutschen Physikalischen Gesellschaft, vol. 21, pp. 750–768, 1919.
27.
Zurück zum Zitat K. Fajans, Verhandlungen der Deutschen Physikalischen Gesellschaft, vol. 21, pp. 714–722, 1919. K. Fajans, Verhandlungen der Deutschen Physikalischen Gesellschaft, vol. 21, pp. 714–722, 1919.
28.
Zurück zum Zitat L. Pauling, “The principles determining the structure of com-plex ionic crystals,” Journal of the American Chemical Society, vol. 51, no. 4, p. 1010–1026, 1929.CrossRef L. Pauling, “The principles determining the structure of com-plex ionic crystals,” Journal of the American Chemical Society, vol. 51, no. 4, p. 1010–1026, 1929.CrossRef
29.
Zurück zum Zitat J. D. Bernal, The Extension Of Man: A History Of Physics Before 1900, London: Weidenfeld and Nicolson, 1972. J. D. Bernal, The Extension Of Man: A History Of Physics Before 1900, London: Weidenfeld and Nicolson, 1972.
30.
Zurück zum Zitat R. D. Shannon and C. T. Prewitt, “Effective Ionic Radii in Oxides and Fluorides,” Acta Crystallographica, vol. B25, pp. 925–946, 1969.CrossRef R. D. Shannon and C. T. Prewitt, “Effective Ionic Radii in Oxides and Fluorides,” Acta Crystallographica, vol. B25, pp. 925–946, 1969.CrossRef
31.
Zurück zum Zitat R. D. Shannon and C. T. Prewitt, “Revised Values of Effective Ionic Radii,” Acta Crystallographica, vol. B26, pp. 1046–1048 , 1970.CrossRef R. D. Shannon and C. T. Prewitt, “Revised Values of Effective Ionic Radii,” Acta Crystallographica, vol. B26, pp. 1046–1048 , 1970.CrossRef
32.
Zurück zum Zitat R. D. Shannon, “Revised Effective Ionic-Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides,” Acta Crystallographica, vol. A32, pp. 751–767, 1976.CrossRef R. D. Shannon, “Revised Effective Ionic-Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides,” Acta Crystallographica, vol. A32, pp. 751–767, 1976.CrossRef
33.
Zurück zum Zitat F. G. Fumi and M. P. Tosi, “Ionic Sizes + Born Repulsive Parameters in NaCl-Type Alkali Halides .I. Huggines-Mayer + Pauling Forms,” Journal of Physics and Chemistry of Solids, vol. 25, no. 1, pp. 31–43, 1964.CrossRef F. G. Fumi and M. P. Tosi, “Ionic Sizes + Born Repulsive Parameters in NaCl-Type Alkali Halides .I. Huggines-Mayer + Pauling Forms,” Journal of Physics and Chemistry of Solids, vol. 25, no. 1, pp. 31–43, 1964.CrossRef
34.
Zurück zum Zitat I. D. Brown, The Chemical Bond in Inorganic Chemistry: The Bond Valence Model, Oxford: Oxford University Press, 2002. I. D. Brown, The Chemical Bond in Inorganic Chemistry: The Bond Valence Model, Oxford: Oxford University Press, 2002.
35.
Zurück zum Zitat N. B. Hannay and C. P. Smyth, “The Dipole Moment of Hydrogen Fluoride and the Ionic Character of Bonds,” Journal of the American Chemical Society, vol. 68, no. 2, pp. 171–173, 1946.CrossRef N. B. Hannay and C. P. Smyth, “The Dipole Moment of Hydrogen Fluoride and the Ionic Character of Bonds,” Journal of the American Chemical Society, vol. 68, no. 2, pp. 171–173, 1946.CrossRef
36.
Zurück zum Zitat L. Pauling, The Nature of the Chemical Bond, Third Edition ed., Ithaca, New York: Cornell University Press, 1960. L. Pauling, The Nature of the Chemical Bond, Third Edition ed., Ithaca, New York: Cornell University Press, 1960.
37.
Zurück zum Zitat Q.-J. Hong and A. van de Walle, “Prediction of the material with highest known melting point from ab initio molecular dynamics calculations,” Physical Review B, vol. 92, p. 020104, 2015. Q.-J. Hong and A. van de Walle, “Prediction of the material with highest known melting point from ab initio molecular dynamics calculations,” Physical Review B, vol. 92, p. 020104, 2015.
38.
Zurück zum Zitat G. Stoney, “On the Cause of Double Lines and of Equidistant Satellites in the Spectra of Gases,” Transactions of the Royal Dublin Society, 2nd series, vol. 4, pp. 563–608, 1888–1892. G. Stoney, “On the Cause of Double Lines and of Equidistant Satellites in the Spectra of Gases,” Transactions of the Royal Dublin Society, 2nd series, vol. 4, pp. 563–608, 1888–1892.
39.
Zurück zum Zitat J. Thomson, “On the masses of ions in gases at low pressure,” Philosophical Magazine, vol. 48, p. 565, 1899. J. Thomson, “On the masses of ions in gases at low pressure,” Philosophical Magazine, vol. 48, p. 565, 1899.
40.
Zurück zum Zitat G. Stoney, “On the Physical Units of Nature,” Scientific Proceedings of the Royal Dublin Society, new series, vol. 3, pp. 51–60, 1881-1883. G. Stoney, “On the Physical Units of Nature,” Scientific Proceedings of the Royal Dublin Society, new series, vol. 3, pp. 51–60, 1881-1883.
41.
Zurück zum Zitat H. E. Swanson and R. K. Fuyat, “National Bureau of Standards Circular 539 Vol. 2,” US Government Printing Office, Washington, DC, 1953. H. E. Swanson and R. K. Fuyat, “National Bureau of Standards Circular 539 Vol. 2,” US Government Printing Office, Washington, DC, 1953.
42.
Zurück zum Zitat K. Fajans, “Struktur und Deformation der Elektronenhüllen in ihrer Bedeutung für die chemischen und optischen Eigenschaften anorganischer Verbindungen,” Die Naturwissenschaften, vol. 11, no. 10, pp. 165–172, 1923.CrossRef K. Fajans, “Struktur und Deformation der Elektronenhüllen in ihrer Bedeutung für die chemischen und optischen Eigenschaften anorganischer Verbindungen,” Die Naturwissenschaften, vol. 11, no. 10, pp. 165–172, 1923.CrossRef
43.
Zurück zum Zitat K. Fajans and G. Joos, “Molrefraktion von Ionen und Molekülen im Lichte der Atomstruktur,” Zeitschrift für Physik, vol. 23, p. 1–46, 1924.CrossRef K. Fajans and G. Joos, “Molrefraktion von Ionen und Molekülen im Lichte der Atomstruktur,” Zeitschrift für Physik, vol. 23, p. 1–46, 1924.CrossRef
44.
Zurück zum Zitat K. Fajans, “II. Die Eigenschaften salzartiger Verbindungen und Atombau,” Zeitschrift für Kristallographie – Crystalline Materials, vol. 61, no. 1, pp. 18–48, 1924.CrossRef K. Fajans, “II. Die Eigenschaften salzartiger Verbindungen und Atombau,” Zeitschrift für Kristallographie – Crystalline Materials, vol. 61, no. 1, pp. 18–48, 1924.CrossRef
Metadaten
Titel
Ionic Bonding
verfasst von
Rick Ubic
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-49752-0_15

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.