Skip to main content
Erschienen in: Fire Technology 5/2022

29.07.2022

Numerical Modelling and Benchmark Study of Fire Resistance of Stainless Steel Structural Elements

verfasst von: J. Pinho-da-Cruz, N. Lopes, P. Vila Real, C. Couto

Erschienen in: Fire Technology | Ausgabe 5/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The validation of numerical models, for the behaviour of structures in case of fire, is crucial for the development of precise and safe design rules for members at elevated temperatures and for the application of advanced calculation methods, on part or complete building structures under fire. Recently, a new constitutive law model for stainless steel at elevated temperatures, based on a two-stage Ramberg–Osgood formulation, was proposed for inclusion in the second generation of Part 1–2 of Eurocode 3 (EC3). In order to better understand the fire behaviour of stainless steel structures and the influence of the abovementioned new constitutive law, the respective formulation was implemented in the SAFIR finite element program. In this work, after validation of that implementation against chosen benchmark tests, different numerical and experimental fire tests obtained from the literature are numerically modelled, considering axially compressed columns, beams and eccentrically loaded columns.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Gardner L (2019) Stability and design of stainless steel structures—review and outlook. Thin-Walled Struct 141:208–216CrossRef Gardner L (2019) Stability and design of stainless steel structures—review and outlook. Thin-Walled Struct 141:208–216CrossRef
2.
Zurück zum Zitat SCI (The Steel Construction Institute) (2017) “Design manual for structural stainless steel”, SCI publication P413, 4th edn. SCI (The Steel Construction Institute), Berkshire SCI (The Steel Construction Institute) (2017) “Design manual for structural stainless steel”, SCI publication P413, 4th edn. SCI (The Steel Construction Institute), Berkshire
3.
Zurück zum Zitat Rossi B (2014) Discussion on the use of stainless steel in constructions in view of sustainability. Thin-Walled Struct 83:182–189CrossRef Rossi B (2014) Discussion on the use of stainless steel in constructions in view of sustainability. Thin-Walled Struct 83:182–189CrossRef
4.
Zurück zum Zitat Baddoo NR (2008) Stainless steel in construction: a review of research, applications, challenges and opportunities. J Constr Steel Res 64(11):1199–1206CrossRef Baddoo NR (2008) Stainless steel in construction: a review of research, applications, challenges and opportunities. J Constr Steel Res 64(11):1199–1206CrossRef
5.
Zurück zum Zitat Mirambell E, Real E (2000) On the calculation of deflections in structural stainless steel beams: an experimental and numerical investigation. J Constr Steel Res 54(1):109–133CrossRef Mirambell E, Real E (2000) On the calculation of deflections in structural stainless steel beams: an experimental and numerical investigation. J Constr Steel Res 54(1):109–133CrossRef
6.
Zurück zum Zitat Rasmussen KJR (2003) Full-range stress–strain curves for stainless steel alloys. J Constr Steel Res 59(1):47–61CrossRef Rasmussen KJR (2003) Full-range stress–strain curves for stainless steel alloys. J Constr Steel Res 59(1):47–61CrossRef
7.
Zurück zum Zitat Gardner L, Ashraf M (2006) Structural design for non-linear metallic materials. Eng Struct 28(6):926–934CrossRef Gardner L, Ashraf M (2006) Structural design for non-linear metallic materials. Eng Struct 28(6):926–934CrossRef
8.
Zurück zum Zitat Ramberg W, Osgood WR (1943) “Description of stress–strain curves by three parameters”. Technical Note No. 902. National Advisory Committee for Aeronautics, Washington, D.C. Ramberg W, Osgood WR (1943) “Description of stress–strain curves by three parameters”. Technical Note No. 902. National Advisory Committee for Aeronautics, Washington, D.C.
9.
Zurück zum Zitat Hill HN (1944) “Determination of stress–strain relations from ‘offset’ yield strength values”, Technical Note No. 927. National Advisory Committee for Aeronautics, Washington, D.C. Hill HN (1944) “Determination of stress–strain relations from ‘offset’ yield strength values”, Technical Note No. 927. National Advisory Committee for Aeronautics, Washington, D.C.
10.
Zurück zum Zitat CEN (Comité Européen de Normalisation) (2006) EN 1993-1-4, Eurocode 3—design of steel structures—part 1–4: general rules—supplementary rules for stainless steels, Brussels CEN (Comité Européen de Normalisation) (2006) EN 1993-1-4, Eurocode 3—design of steel structures—part 1–4: general rules—supplementary rules for stainless steels, Brussels
11.
Zurück zum Zitat CEN (Comité Européen de Normalisation) (2005) EN 1993-1-2, Eurocode 3—design of steel structures—part 1–2: general rules—structural fire design, Brussels CEN (Comité Européen de Normalisation) (2005) EN 1993-1-2, Eurocode 3—design of steel structures—part 1–2: general rules—structural fire design, Brussels
12.
Zurück zum Zitat Zhao B (2002) Évaluation de la résistance au feu des éléments structuraux en acier inoxydable (in French). Construction Métallique 4:55–64 Zhao B (2002) Évaluation de la résistance au feu des éléments structuraux en acier inoxydable (in French). Construction Métallique 4:55–64
13.
Zurück zum Zitat CEN (Comité Européen de Normalisation) (2021) prEN 1993-1-2:2021, Eurocode 3—design of steel structures—part 1–2: general rules—structural fire design, Brussels CEN (Comité Européen de Normalisation) (2021) prEN 1993-1-2:2021, Eurocode 3—design of steel structures—part 1–2: general rules—structural fire design, Brussels
14.
Zurück zum Zitat Chen J, Young B (2006) Stress–strain curves for stainless steel at elevated temperatures. Eng Struct 28(2):229–239CrossRef Chen J, Young B (2006) Stress–strain curves for stainless steel at elevated temperatures. Eng Struct 28(2):229–239CrossRef
15.
Zurück zum Zitat Liang Y, Manninen T, Zhao O, Walport F, Gardner L (2019) Elevated temperature material properties of a new high-chromium austenitic stainless steel. J Constr Steel Res 152:261–273CrossRef Liang Y, Manninen T, Zhao O, Walport F, Gardner L (2019) Elevated temperature material properties of a new high-chromium austenitic stainless steel. J Constr Steel Res 152:261–273CrossRef
16.
Zurück zum Zitat Simo JC, Taylor RL (1986) A return mapping algorithm for plane stress elastoplasticity. Int J Numer Meth Eng 22(3):649–670MathSciNetCrossRef Simo JC, Taylor RL (1986) A return mapping algorithm for plane stress elastoplasticity. Int J Numer Meth Eng 22(3):649–670MathSciNetCrossRef
17.
Zurück zum Zitat Jetteur P (1986) Implicit integration algorithm for elastoplasticity in plane stress analysis. Eng Comput 3(3):251–253CrossRef Jetteur P (1986) Implicit integration algorithm for elastoplasticity in plane stress analysis. Eng Comput 3(3):251–253CrossRef
18.
Zurück zum Zitat Franssen J-M, Gernay T (2017) Modeling structures in fire with SAFIR®: theoretical background and capabilities. J Struct Fire Eng 8(3):300–323CrossRef Franssen J-M, Gernay T (2017) Modeling structures in fire with SAFIR®: theoretical background and capabilities. J Struct Fire Eng 8(3):300–323CrossRef
20.
Zurück zum Zitat Lopes N, Vila Real P, da Silva LS, Franssen J-M (2010) Numerical modelling of thin-walled stainless steel structural elements in case of fire. Fire Technol 46:91–108CrossRef Lopes N, Vila Real P, da Silva LS, Franssen J-M (2010) Numerical modelling of thin-walled stainless steel structural elements in case of fire. Fire Technol 46:91–108CrossRef
21.
Zurück zum Zitat Fan S, Ding X, Sun W, Zhang L, Liu M (2016) Experimental investigation on fire resistance of stainless steel columns with square hollow section. Thin-Walled Struct 98(Part A):196–211CrossRef Fan S, Ding X, Sun W, Zhang L, Liu M (2016) Experimental investigation on fire resistance of stainless steel columns with square hollow section. Thin-Walled Struct 98(Part A):196–211CrossRef
22.
Zurück zum Zitat Fan S, He B, Xia X, Gui H, Liu M (2016) Fire resistance of stainless steel beams with rectangular hollow section: experimental investigation. Fire Saf J 81:17–31CrossRef Fan S, He B, Xia X, Gui H, Liu M (2016) Fire resistance of stainless steel beams with rectangular hollow section: experimental investigation. Fire Saf J 81:17–31CrossRef
23.
Zurück zum Zitat Tondini N, Rossi B, Franssen J-M (2013) Experimental investigation on ferritic stainless steel columns in fire. Fire Saf J 62(Part C):238–248CrossRef Tondini N, Rossi B, Franssen J-M (2013) Experimental investigation on ferritic stainless steel columns in fire. Fire Saf J 62(Part C):238–248CrossRef
24.
Zurück zum Zitat Uppfeldt B, Ala Outinen T, Veljkovic M (2008) A design model for stainless steel box columns in fire. J Constr Steel Res 64:1294–1301CrossRef Uppfeldt B, Ala Outinen T, Veljkovic M (2008) A design model for stainless steel box columns in fire. J Constr Steel Res 64:1294–1301CrossRef
25.
Zurück zum Zitat To ECY, Young B (2008) Performance of cold-formed stainless steel tubular columns at elevated temperatures. Eng Struct 30(7):2012–2021CrossRef To ECY, Young B (2008) Performance of cold-formed stainless steel tubular columns at elevated temperatures. Eng Struct 30(7):2012–2021CrossRef
26.
Zurück zum Zitat Gardner L, Baddoo NR (2006) Fire testing and design of stainless steel structures. J Constr Steel Res 62(6):532–543CrossRef Gardner L, Baddoo NR (2006) Fire testing and design of stainless steel structures. J Constr Steel Res 62(6):532–543CrossRef
27.
Zurück zum Zitat Oksanen T (1997) “Stainless steel compression members exposed to fire” VTT research notes 1864. Espoo (Finland) Oksanen T (1997) “Stainless steel compression members exposed to fire” VTT research notes 1864. Espoo (Finland)
28.
Zurück zum Zitat Simo JC, Hughes TJR (1998) “Computational inelasticity”, interdisciplinary applied mathematics, vol 7. Springer, New York Simo JC, Hughes TJR (1998) “Computational inelasticity”, interdisciplinary applied mathematics, vol 7. Springer, New York
29.
Zurück zum Zitat CEN (Comité Européen de Normalisation) (2006) EN 1993-1-5, Eurocode 3—design of steel structures—part 1–5: plated structural elements, Brussels CEN (Comité Européen de Normalisation) (2006) EN 1993-1-5, Eurocode 3—design of steel structures—part 1–5: plated structural elements, Brussels
30.
Zurück zum Zitat CEN (Comité Européen de Normalisation) (2008) EN 1090-2, execution of steel structures and aluminium structures—part 2: technical requirements for steel structures, Brussels CEN (Comité Européen de Normalisation) (2008) EN 1090-2, execution of steel structures and aluminium structures—part 2: technical requirements for steel structures, Brussels
31.
Zurück zum Zitat ECCS (The European Convention for Constructional Steelwork) (1984) “Ultimate limit state calculation of sway frames with rigid joints”, Publication No. 33, ECCS—Technical Committee 8—Structural Stability, Technical Working Group 8.2–System ECCS (The European Convention for Constructional Steelwork) (1984) “Ultimate limit state calculation of sway frames with rigid joints”, Publication No. 33, ECCS—Technical Committee 8—Structural Stability, Technical Working Group 8.2–System
32.
Zurück zum Zitat Franssen J-M (1993) “Residual stresses in steel profiles submitted to the fire: an analogy”, 3rd CIB/W14 Workshop, “Modelling”, TNO Building and Construction Research, Rijswijk Franssen J-M (1993) “Residual stresses in steel profiles submitted to the fire: an analogy”, 3rd CIB/W14 Workshop, “Modelling”, TNO Building and Construction Research, Rijswijk
33.
Zurück zum Zitat CEA (Commissariat à l’énergie atomique et aux énergies alternatives) (2015) CAST3M: code for solving partial differential equations by the FEM CEA (Commissariat à l’énergie atomique et aux énergies alternatives) (2015) CAST3M: code for solving partial differential equations by the FEM
34.
Zurück zum Zitat Couto C, Vila Real P, Lopes N (2013) RUBY: an interface software for running a buckling analysis of SAFIR models using Cast3M, University of Aveiro Couto C, Vila Real P, Lopes N (2013) RUBY: an interface software for running a buckling analysis of SAFIR models using Cast3M, University of Aveiro
35.
Zurück zum Zitat Li B, Ren FC, Tang XY (2018) The effect of strain hardening on mechanical properties of S30408 austenitic stainless steel: a fundamental research for the quality evaluation of strain strengthened pressure vessel. Mater Sci Eng 382(3):032013 Li B, Ren FC, Tang XY (2018) The effect of strain hardening on mechanical properties of S30408 austenitic stainless steel: a fundamental research for the quality evaluation of strain strengthened pressure vessel. Mater Sci Eng 382(3):032013
36.
Zurück zum Zitat CEN (Comité Européen de Normalisation) (2006) EN 10219-2, cold formed welded structural hollow sections of non-alloy and fine grain steels—part 2: tolerances, dimensions and sectional properties, Brussels CEN (Comité Européen de Normalisation) (2006) EN 10219-2, cold formed welded structural hollow sections of non-alloy and fine grain steels—part 2: tolerances, dimensions and sectional properties, Brussels
37.
Zurück zum Zitat Gardner L, Cruise RB (2009) Modeling of residual stresses in structural stainless steel sections. J Struct Eng ASCE 135(1):42–53CrossRef Gardner L, Cruise RB (2009) Modeling of residual stresses in structural stainless steel sections. J Struct Eng ASCE 135(1):42–53CrossRef
38.
Zurück zum Zitat Martins AD, Gonçalves R, Camotim D (2021) Numerical simulation and design of stainless steel columns under fire conditions. Eng Struct 229:111628CrossRef Martins AD, Gonçalves R, Camotim D (2021) Numerical simulation and design of stainless steel columns under fire conditions. Eng Struct 229:111628CrossRef
Metadaten
Titel
Numerical Modelling and Benchmark Study of Fire Resistance of Stainless Steel Structural Elements
verfasst von
J. Pinho-da-Cruz
N. Lopes
P. Vila Real
C. Couto
Publikationsdatum
29.07.2022
Verlag
Springer US
Erschienen in
Fire Technology / Ausgabe 5/2022
Print ISSN: 0015-2684
Elektronische ISSN: 1572-8099
DOI
https://doi.org/10.1007/s10694-022-01286-3

Weitere Artikel der Ausgabe 5/2022

Fire Technology 5/2022 Zur Ausgabe