Skip to main content

2024 | OriginalPaper | Buchkapitel

8. SFQ/DQFP Interface Circuits

verfasst von : Gleb Krylov, Tahereh Jabbari, Eby G. Friedman

Erschienen in: Single Flux Quantum Integrated Circuit Design

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The increasing complexity of hybrid superconductive computing systems has made interface circuits between logic families an issue of growing importance. In this chapter, interface circuits between single flux quantum (SFQ) and directly coupled quantum flux parametron (DQFP) logic families to achieve high speed, low power hybrid superconductive computing systems are presented. In the DQFP-to-SFQ interface, margins greater than \(\pm \)20% of the critical current of the JJs, bias currents, and inductances are exhibited. The margins of the excitation current of the DQFP buffer are \(-\)38% and \(+\)35% with the frequency of the excitation current in the range of 2 to 10 GHz. In the SFQ-to-DQFP interface, the margins are greater than \(-\)33% and \(+\)25%. The margins of the excitation current of the DQFP buffer are \(-\)50% and \(+\)20% for frequencies ranging from 2 to 10 GHz. Since no transformers are required, the physical area of the adiabatic portion of the interface circuits is significantly less than existing interface circuits. The SFQ-to-DQFP interface circuit operates at frequencies approaching 20 GHz. These interface circuits therefore exhibit high parameter margins and operating frequencies while requiring significantly less area as compared to existing interface circuits. The interface circuits support the use of both ultra-low power and high speed logic families in complex hybrid superconductive systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
25.
Zurück zum Zitat K.K. Likharev, V.K. Semenov, RSFQ logic/memory family: a new Josephson-junction technology for sub-terahertz-clock-frequency digital systems. IEEE Trans. Appl. Supercond. 1(1), 3–28 (1991)CrossRef K.K. Likharev, V.K. Semenov, RSFQ logic/memory family: a new Josephson-junction technology for sub-terahertz-clock-frequency digital systems. IEEE Trans. Appl. Supercond. 1(1), 3–28 (1991)CrossRef
39.
Zurück zum Zitat T. Jabbari, G. Krylov, S. Whiteley, E. Mlinar, J Kawa, E.G. Friedman, Interconnect routing for large scale RSFQ circuits. IEEE Trans. Appl. Supercond. 29(5), 1102805 (2019) T. Jabbari, G. Krylov, S. Whiteley, E. Mlinar, J Kawa, E.G. Friedman, Interconnect routing for large scale RSFQ circuits. IEEE Trans. Appl. Supercond. 29(5), 1102805 (2019)
41.
Zurück zum Zitat T. Jabbari, E.G. Friedman, Global interconnects in VLSI complexity single flux quantum systems, in Proceedings of the Workshop on System-Level Interconnect: Problems and Pathfinding Workshop (2020), pp. 1–7 T. Jabbari, E.G. Friedman, Global interconnects in VLSI complexity single flux quantum systems, in Proceedings of the Workshop on System-Level Interconnect: Problems and Pathfinding Workshop (2020), pp. 1–7
42.
Zurück zum Zitat T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Repeater insertion in SFQ interconnect. IEEE Trans. Appl. Supercond. 30(8), 5400508 (2020) T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Repeater insertion in SFQ interconnect. IEEE Trans. Appl. Supercond. 30(8), 5400508 (2020)
47.
Zurück zum Zitat T. Jabbari, E.G. Friedman, SFQ/DQFP interface circuits. IEEE Trans. Appl. Supercond. 33(5), 1–5 (2023) T. Jabbari, E.G. Friedman, SFQ/DQFP interface circuits. IEEE Trans. Appl. Supercond. 33(5), 1–5 (2023)
57.
Zurück zum Zitat T. Jabbari, E.G. Friedman, Transmission lines in VLSI complexity single flux quantum systems, in Proceedings of the PhotonIcs and Electromagnetics Research Symposium (2023), pp. 1749–1759 T. Jabbari, E.G. Friedman, Transmission lines in VLSI complexity single flux quantum systems, in Proceedings of the PhotonIcs and Electromagnetics Research Symposium (2023), pp. 1749–1759
58.
Zurück zum Zitat R. Bairamkulov, T. Jabbari, E.G. Friedman, QuCTS – single flux quantum clock tree synthesis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 41(10), 3346–3358 (2022)CrossRef R. Bairamkulov, T. Jabbari, E.G. Friedman, QuCTS – single flux quantum clock tree synthesis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 41(10), 3346–3358 (2022)CrossRef
61.
Zurück zum Zitat T. Jabbari, E.G. Friedman, Flux mitigation in wide superconductive striplines. IEEE Trans. Appl. Supercond. 32(3), 1–6 (2022)CrossRef T. Jabbari, E.G. Friedman, Flux mitigation in wide superconductive striplines. IEEE Trans. Appl. Supercond. 32(3), 1–6 (2022)CrossRef
63.
Zurück zum Zitat T. Jabbari, E.G. Friedman, Stripline topology for flux mitigation. IEEE Trans. Appl. Supercond. 335, 1–4 (2023) T. Jabbari, E.G. Friedman, Stripline topology for flux mitigation. IEEE Trans. Appl. Supercond. 335, 1–4 (2023)
87.
Zurück zum Zitat T. Jabbari, E.G. Friedman, Surface inductance of superconductive striplines. IEEE Trans. Circuits Syst. II Express Briefs 69(6), 2952–2956 (2022) T. Jabbari, E.G. Friedman, Surface inductance of superconductive striplines. IEEE Trans. Circuits Syst. II Express Briefs 69(6), 2952–2956 (2022)
111.
Zurück zum Zitat S.K. Tolpygo, V. Bolkhovsky, T.J. Weir, A. Wynn, D.E. Oates, L.M. Johnson, M.A. Gouker, Advanced fabrication processes for superconducting very large-scale integrated circuits. IEEE Trans. Appl. Supercond. 26(3), 1–10 (2016)CrossRef S.K. Tolpygo, V. Bolkhovsky, T.J. Weir, A. Wynn, D.E. Oates, L.M. Johnson, M.A. Gouker, Advanced fabrication processes for superconducting very large-scale integrated circuits. IEEE Trans. Appl. Supercond. 26(3), 1–10 (2016)CrossRef
186.
Zurück zum Zitat N. Takeuchi, D. Ozawa, Y. Yamanashi, N. Yoshikawa, An adiabatic quantum flux parametron as an ultra-low-power logic device. Supercond. Sci. Technol. 26(3), 035010 (2013) N. Takeuchi, D. Ozawa, Y. Yamanashi, N. Yoshikawa, An adiabatic quantum flux parametron as an ultra-low-power logic device. Supercond. Sci. Technol. 26(3), 035010 (2013)
236.
Zurück zum Zitat J.Y. Kim, J.H. Kang, High frequency operation of a rapid single flux quantum arithmetic and logic unit. J. Korean Phys. Soc. 48(5), 1004–1007 (2006) J.Y. Kim, J.H. Kang, High frequency operation of a rapid single flux quantum arithmetic and logic unit. J. Korean Phys. Soc. 48(5), 1004–1007 (2006)
242.
Zurück zum Zitat T. Jabbari, R. Bairamkulov, J. Kawa, E. Friedman, Interconnect benchmark circuits for single flux quantum integrated circuits. IEEE Trans. Appl. Supercond. (2023). Under review T. Jabbari, R. Bairamkulov, J. Kawa, E. Friedman, Interconnect benchmark circuits for single flux quantum integrated circuits. IEEE Trans. Appl. Supercond. (2023). Under review
272.
Zurück zum Zitat N. Takeuchi, Y. Yamanashi, N. Yoshikawa, Adiabatic quantum-flux-parametron cell library adopting minimalist design. J. Appl. Phys. 117(17), 173912 (2015) N. Takeuchi, Y. Yamanashi, N. Yoshikawa, Adiabatic quantum-flux-parametron cell library adopting minimalist design. J. Appl. Phys. 117(17), 173912 (2015)
273.
Zurück zum Zitat N. Takeuchi, Y. Yamanashi, N. Yoshikawa, Energy efficiency of adiabatic superconductor logic. Supercond. Sci. Technol. 28(1), 015003 (2014) N. Takeuchi, Y. Yamanashi, N. Yoshikawa, Energy efficiency of adiabatic superconductor logic. Supercond. Sci. Technol. 28(1), 015003 (2014)
276.
Zurück zum Zitat Y. He, C.L. Ayala, N. Takeuchi, T. Yamae, Y. Hironaka, A. Sahu, V. Gupta, A. Talalaevskii, D. Gupta, N. Yoshikawa, A compact AQFP logic cell design using an 8-metal layer superconductor process. Supercond. Sci. Technol. 33(3), 035010 (2020) Y. He, C.L. Ayala, N. Takeuchi, T. Yamae, Y. Hironaka, A. Sahu, V. Gupta, A. Talalaevskii, D. Gupta, N. Yoshikawa, A compact AQFP logic cell design using an 8-metal layer superconductor process. Supercond. Sci. Technol. 33(3), 035010 (2020)
277.
Zurück zum Zitat Y. Hironaka, S.S. Meher, C.L. Ayala, Y. He, T. Tanaka, M. Habib, A. Sahu, A. Inamdar, D. Gupta, N. Yoshikawa, Demonstration of interface circuits for adiabatic quantum-flux-parametron cell library using an eight-metal layer superconductor process. IEEE Trans. Appl. Supercond. 33(5), 1–5 (2023)CrossRef Y. Hironaka, S.S. Meher, C.L. Ayala, Y. He, T. Tanaka, M. Habib, A. Sahu, A. Inamdar, D. Gupta, N. Yoshikawa, Demonstration of interface circuits for adiabatic quantum-flux-parametron cell library using an eight-metal layer superconductor process. IEEE Trans. Appl. Supercond. 33(5), 1–5 (2023)CrossRef
278.
Zurück zum Zitat R. Ishida, N. Takeuchi, T. Yamae, N. Yoshikawa, Design and demonstration of directly coupled quantum-flux-parametron circuits with optimized parameters. IEEE Trans. Appl. Supercond. 31(5), 1100505 (2021) R. Ishida, N. Takeuchi, T. Yamae, N. Yoshikawa, Design and demonstration of directly coupled quantum-flux-parametron circuits with optimized parameters. IEEE Trans. Appl. Supercond. 31(5), 1100505 (2021)
279.
Zurück zum Zitat R. Ishida, N. Takeuchi, T. Yamae, N. Yoshikawa, Parameter optimization of directly coupled quantum flux parametron circuits. IEICE Tech. Rep. 119(369), 91–93 (2020) R. Ishida, N. Takeuchi, T. Yamae, N. Yoshikawa, Parameter optimization of directly coupled quantum flux parametron circuits. IEICE Tech. Rep. 119(369), 91–93 (2020)
280.
Zurück zum Zitat F. China, N. Tsuji, T. Narama, N. Takeuchi, T. Ortlepp, Y. Yamanashi, N. Yoshikawa, Demonstration of signal transmission between adiabatic quantum-flux-parametrons and rapid single-flux-quantum circuits using superconductive microstrip lines. IEEE Trans. Appl. Supercond. 27(4), 1–5 (2017) F. China, N. Tsuji, T. Narama, N. Takeuchi, T. Ortlepp, Y. Yamanashi, N. Yoshikawa, Demonstration of signal transmission between adiabatic quantum-flux-parametrons and rapid single-flux-quantum circuits using superconductive microstrip lines. IEEE Trans. Appl. Supercond. 27(4), 1–5 (2017)
281.
Zurück zum Zitat F. China, T. Narama, N. Takeuchi, T. Ortlepp, Y. Yamanashi, N. Yoshikawa, Design and demonstration of interface circuits between rapid single-flux-quantum and adiabatic quantum-flux-parametron circuits. IEEE Trans. Appl. Supercond. 26(5), 1301305 (2016) F. China, T. Narama, N. Takeuchi, T. Ortlepp, Y. Yamanashi, N. Yoshikawa, Design and demonstration of interface circuits between rapid single-flux-quantum and adiabatic quantum-flux-parametron circuits. IEEE Trans. Appl. Supercond. 26(5), 1301305 (2016)
282.
Zurück zum Zitat N. Takeuchi, T. Yamae, C.L. Ayala, H. Suzuki, N. Yoshikawa, An adiabatic superconductor 8-bit adder with 24k\({ }_B\)T energy dissipation per junction. Appl. Phys. Lett. 114(4), 042602 (2019) N. Takeuchi, T. Yamae, C.L. Ayala, H. Suzuki, N. Yoshikawa, An adiabatic superconductor 8-bit adder with 24k\({ }_B\)T energy dissipation per junction. Appl. Phys. Lett. 114(4), 042602 (2019)
283.
Zurück zum Zitat Y. He, C.L. Ayala, N. Takeuchi, Y. Hironaka, T. Yamae, S. Meher, A. Inamdar, D. Gupta, N. Yoshikawa, Demonstration of interfaces between adiabatic quantum-flux-parametron and rapid single-flux-quantum circuits using the MIT-LL SFQ5ee process, in Proceedings of the Applied Superconductivity Conference (2020) Y. He, C.L. Ayala, N. Takeuchi, Y. Hironaka, T. Yamae, S. Meher, A. Inamdar, D. Gupta, N. Yoshikawa, Demonstration of interfaces between adiabatic quantum-flux-parametron and rapid single-flux-quantum circuits using the MIT-LL SFQ5ee process, in Proceedings of the Applied Superconductivity Conference (2020)
Metadaten
Titel
SFQ/DQFP Interface Circuits
verfasst von
Gleb Krylov
Tahereh Jabbari
Eby G. Friedman
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-47475-0_8

Neuer Inhalt