Skip to main content

2024 | OriginalPaper | Buchkapitel

2. Physics and Devices of Superconductive Electronics

verfasst von : Gleb Krylov, Tahereh Jabbari, Eby G. Friedman

Erschienen in: Single Flux Quantum Integrated Circuit Design

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, the phenomenon of superconductivity is introduced. A theoretical framework for the analysis of low-temperature superconductive materials—the London, Ginzburg-Landau, and Bardeen-Cooper-Schrieffer theories—is described. The defining features of superconductive materials are discussed, along with different types of materials and characteristics. The properties of these materials are emphasized in relation to superconductive electronics. As compared to conventional transistor-based circuits, superconductive electronics utilize a different set of basic devices as building blocks of larger circuits. These basic devices are introduced in this chapter. The properties and dynamic behavior of Josephson junctions are discussed with intuitive analogies describing both the dynamic behavior and classic circuit models. Important cryogenic devices commonly used in superconductive electronics are also briefly reviewed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H.K. Onnes, Investigations into the properties of substances at low temperatures, which have led, amongst Other things, to the preparation of liquid helium, in Nobel Lecture, vol. 4 (1913) H.K. Onnes, Investigations into the properties of substances at low temperatures, which have led, amongst Other things, to the preparation of liquid helium, in Nobel Lecture, vol. 4 (1913)
5.
Zurück zum Zitat D.A. Buck, The cryotron – a superconductive computer component. Proc. IRE 44(4), 482–493 (1956)CrossRef D.A. Buck, The cryotron – a superconductive computer component. Proc. IRE 44(4), 482–493 (1956)CrossRef
13.
Zurück zum Zitat B.D. Josephson, Possible new effects in superconductive tunneling. Phys. Lett. 1(7), 251–253 (1962)CrossRef B.D. Josephson, Possible new effects in superconductive tunneling. Phys. Lett. 1(7), 251–253 (1962)CrossRef
21.
Zurück zum Zitat J.G. Bednorz, K.A. Müller, Possible high \(T_c\) superconductivity in the Ba–La–Cu–O system. Zeitschrift für Phy. B Condens. Matter 64(2), 189–193 (1986) J.G. Bednorz, K.A. Müller, Possible high \(T_c\) superconductivity in the Ba–La–Cu–O system. Zeitschrift für Phy. B Condens. Matter 64(2), 189–193 (1986)
22.
Zurück zum Zitat T. Jabbari, F. Shanehsazzadeh, H. Zandi, M. Banzet, J. Schubert, M. Fardmanesh, Effects of the design parameters on characteristics of the inductances and JJs in HTS RSFQ circuits. IEEE Trans. Appl. Supercond. 28(7), 1–4 (2018)CrossRef T. Jabbari, F. Shanehsazzadeh, H. Zandi, M. Banzet, J. Schubert, M. Fardmanesh, Effects of the design parameters on characteristics of the inductances and JJs in HTS RSFQ circuits. IEEE Trans. Appl. Supercond. 28(7), 1–4 (2018)CrossRef
23.
Zurück zum Zitat F. Shanehsazzadeh, T. Jabbari, F. Qaderi, M. Fardmanesh, Integrated monolayer planar flux transformer and resonator tank circuit for high- T\({ }_C\) RF-SQUID magnetometer. IEEE Trans. Appl. Supercond. 27(4), 1–4 (2017) F. Shanehsazzadeh, T. Jabbari, F. Qaderi, M. Fardmanesh, Integrated monolayer planar flux transformer and resonator tank circuit for high- T\({ }_C\) RF-SQUID magnetometer. IEEE Trans. Appl. Supercond. 27(4), 1–4 (2017)
49.
Zurück zum Zitat G.N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, R. Sobolewski, Picosecond superconducting single-photon optical detector. Appl. Phys. Lett. 79(6), 705–707 (2001)CrossRef G.N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, R. Sobolewski, Picosecond superconducting single-photon optical detector. Appl. Phys. Lett. 79(6), 705–707 (2001)CrossRef
56.
Zurück zum Zitat T. Jabbari, M. Bocko, E.G. Friedman, All-JJ logic based on bistable JJs. IEEE Trans. Appl. Supercond. 33(5), 1–7 (2023) T. Jabbari, M. Bocko, E.G. Friedman, All-JJ logic based on bistable JJs. IEEE Trans. Appl. Supercond. 33(5), 1–7 (2023)
66.
Zurück zum Zitat F. London, H. London, The electromagnetic equations of the supraconductor. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 149(866), 71–88 (1935) F. London, H. London, The electromagnetic equations of the supraconductor. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 149(866), 71–88 (1935)
67.
Zurück zum Zitat V.L. Ginzburg, On superconductivity and superfluidity, in Nobel Lecture (2003) V.L. Ginzburg, On superconductivity and superfluidity, in Nobel Lecture (2003)
68.
Zurück zum Zitat P.C. Hohenberg, A.P. Krekhov, An introduction to the Ginzburg–Landau theory of phase transitions and nonequilibrium patterns. Phys. Rep. 572, 1–42 (2015)MathSciNetCrossRef P.C. Hohenberg, A.P. Krekhov, An introduction to the Ginzburg–Landau theory of phase transitions and nonequilibrium patterns. Phys. Rep. 572, 1–42 (2015)MathSciNetCrossRef
69.
Zurück zum Zitat V.L. Ginzburg, Superfluidity and superconductivity in astrophysics. Comments Astrophys. Space Phys. 1, 81–86 (1969) V.L. Ginzburg, Superfluidity and superconductivity in astrophysics. Comments Astrophys. Space Phys. 1, 81–86 (1969)
70.
71.
Zurück zum Zitat L.N. Cooper, Bound electron Pairs in a degenerate fermi gas. Phys. Rev. 104, 1189–1190 (1956)CrossRef L.N. Cooper, Bound electron Pairs in a degenerate fermi gas. Phys. Rev. 104, 1189–1190 (1956)CrossRef
72.
Zurück zum Zitat V.F. Weisskopf, The Formation of Cooper Pairs and the Nature of Superconducting Currents (European Council for Nuclear Research (CERN), Switzerland, 1979) V.F. Weisskopf, The Formation of Cooper Pairs and the Nature of Superconducting Currents (European Council for Nuclear Research (CERN), Switzerland, 1979)
73.
Zurück zum Zitat B.V. Svistunov, E.S. Babaev, N.V. Prokof’ev, Superfluid States of Matter (CRC Press, Boca Raton, 2015)CrossRef B.V. Svistunov, E.S. Babaev, N.V. Prokof’ev, Superfluid States of Matter (CRC Press, Boca Raton, 2015)CrossRef
74.
Zurück zum Zitat W. Meissner, R. Ochsenfeld, Ein Neuer Effekt bei Eintritt der Supraleitfähigkeit. Naturwissenschaften 21(44), 787–788 (1933)CrossRef W. Meissner, R. Ochsenfeld, Ein Neuer Effekt bei Eintritt der Supraleitfähigkeit. Naturwissenschaften 21(44), 787–788 (1933)CrossRef
75.
Zurück zum Zitat L.H. Greene, High-temperature superconductors: playgrounds for broken symmetries. AIP Conf. Proc. 795(1), 70–82 (2005)CrossRef L.H. Greene, High-temperature superconductors: playgrounds for broken symmetries. AIP Conf. Proc. 795(1), 70–82 (2005)CrossRef
76.
Zurück zum Zitat S.A. Kivelson, D.S. Rokhsar, Bogoliubov quasiparticles, spinons, and spin-charge decoupling in superconductors. Phys. Rev. B 41, 11693–11696 (1990)CrossRef S.A. Kivelson, D.S. Rokhsar, Bogoliubov quasiparticles, spinons, and spin-charge decoupling in superconductors. Phys. Rev. B 41, 11693–11696 (1990)CrossRef
77.
Zurück zum Zitat A.I. Golovashkin, N.P. Shabanova, Temperature dependence of critical magnetic fields and electronic characteristics of Nb3Ge films. Soviet Phys. JETP 55(3), 503–508 (1982) A.I. Golovashkin, N.P. Shabanova, Temperature dependence of critical magnetic fields and electronic characteristics of Nb3Ge films. Soviet Phys. JETP 55(3), 503–508 (1982)
78.
Zurück zum Zitat A.B. Pippard, Field variation of the superconducting penetration depth. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 203(1073), 210–223 (1950) A.B. Pippard, Field variation of the superconducting penetration depth. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 203(1073), 210–223 (1950)
79.
Zurück zum Zitat J.E. Sonier, The Magnetic Penetration Depth and the Vortex Core Radius in Type-II Superconductors, Ph.D. Dissertation, University of British Columbia, Vancouver 1998 J.E. Sonier, The Magnetic Penetration Depth and the Vortex Core Radius in Type-II Superconductors, Ph.D. Dissertation, University of British Columbia, Vancouver 1998
80.
Zurück zum Zitat A.A. Abrikosov, Nobel lecture: type-II superconductors and the vortex lattice. Rev. Mod. Phys. 76, 975–979 (2004)CrossRef A.A. Abrikosov, Nobel lecture: type-II superconductors and the vortex lattice. Rev. Mod. Phys. 76, 975–979 (2004)CrossRef
81.
Zurück zum Zitat R.A. French, Intrinsic type-2 superconductivity in pure niobium. Cryogenics 8(5), 301–308 (1968)CrossRef R.A. French, Intrinsic type-2 superconductivity in pure niobium. Cryogenics 8(5), 301–308 (1968)CrossRef
82.
Zurück zum Zitat H.A. Boorse, D.B. Cook, M.W. Zemansky, Superconductivity of lead. Phys. Rev. 78, 635–636 (1950)CrossRef H.A. Boorse, D.B. Cook, M.W. Zemansky, Superconductivity of lead. Phys. Rev. 78, 635–636 (1950)CrossRef
83.
Zurück zum Zitat I.S. Khukhareva, The superconducting properties of thin aluminum films. Soviet Phys. JETP 16, 828–832 (1963) I.S. Khukhareva, The superconducting properties of thin aluminum films. Soviet Phys. JETP 16, 828–832 (1963)
84.
Zurück zum Zitat G. Behrens, W. Campbell, D. Williams, S. White, Guidelines for the design of cryogenic systems. NRAO Electronic Division Internal Report, No. 306 (1997) G. Behrens, W. Campbell, D. Williams, S. White, Guidelines for the design of cryogenic systems. NRAO Electronic Division Internal Report, No. 306 (1997)
85.
Zurück zum Zitat A. Schilling, M. Cantoni, J.D. Guo, H.R. Ott, Superconductivity above 130 K in the Hg–Ba–Ca–Cu–O system. Nature 363(6424), 56–58 (1993)CrossRef A. Schilling, M. Cantoni, J.D. Guo, H.R. Ott, Superconductivity above 130 K in the Hg–Ba–Ca–Cu–O system. Nature 363(6424), 56–58 (1993)CrossRef
86.
Zurück zum Zitat A.R. Kerr, Surface impedance of superconductors and normal conductors in EM simulators. National Radio Astronomy Observatory, Electronics Division Internal Report, No. 302 (1996) A.R. Kerr, Surface impedance of superconductors and normal conductors in EM simulators. National Radio Astronomy Observatory, Electronics Division Internal Report, No. 302 (1996)
87.
Zurück zum Zitat T. Jabbari, E.G. Friedman, Surface inductance of superconductive striplines. IEEE Trans. Circuits Syst. II Express Briefs 69(6), 2952–2956 (2022) T. Jabbari, E.G. Friedman, Surface inductance of superconductive striplines. IEEE Trans. Circuits Syst. II Express Briefs 69(6), 2952–2956 (2022)
88.
Zurück zum Zitat K.K. Likharev, Dynamics of Josephson Junctions and Circuits (Gordon and Breach Science Publishers, London, 1986) K.K. Likharev, Dynamics of Josephson Junctions and Circuits (Gordon and Breach Science Publishers, London, 1986)
89.
Zurück zum Zitat J. Clarke, Supercurrents in lead-copper-lead sandwiches. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 308(1495), 447–471 (1969) J. Clarke, Supercurrents in lead-copper-lead sandwiches. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 308(1495), 447–471 (1969)
90.
Zurück zum Zitat K.K. Likharev, Superconducting weak links. Rev. Mod. Phys. 51, 101–159 (1979)CrossRef K.K. Likharev, Superconducting weak links. Rev. Mod. Phys. 51, 101–159 (1979)CrossRef
91.
Zurück zum Zitat S.K. Tolpygo, Superconductor digital electronics: scalability and energy efficiency issues. Low Temp. Phys. 42(5), 361–379 (2016)CrossRef S.K. Tolpygo, Superconductor digital electronics: scalability and energy efficiency issues. Low Temp. Phys. 42(5), 361–379 (2016)CrossRef
92.
Zurück zum Zitat R. Gross, A. Marx, F. Deppe, Applied Superconductivity: Josephson Effect and Superconducting Electronics (Walter De Gruyter Incorporated, Berlin, 2016) R. Gross, A. Marx, F. Deppe, Applied Superconductivity: Josephson Effect and Superconducting Electronics (Walter De Gruyter Incorporated, Berlin, 2016)
93.
Zurück zum Zitat W.C. Stewart, Current-voltage characteristics of Josephson junctions. Appl. Phys. Lett. 12(8), 277–280 (1968)CrossRef W.C. Stewart, Current-voltage characteristics of Josephson junctions. Appl. Phys. Lett. 12(8), 277–280 (1968)CrossRef
94.
Zurück zum Zitat D.E. McCumber, Effect of AC impedance on DC voltage-current characteristics of superconductor weak-link junctions. J. Appl. Phys. 39(7), 3113–3118 (1968)CrossRef D.E. McCumber, Effect of AC impedance on DC voltage-current characteristics of superconductor weak-link junctions. J. Appl. Phys. 39(7), 3113–3118 (1968)CrossRef
95.
Zurück zum Zitat C.M. Natarajan, M.G. Tanner, R.H. Hadfield, Superconducting nanowire single-photon detectors: physics and applications. Supercond. Sci. Technol. 25(6), 063001 (2012) C.M. Natarajan, M.G. Tanner, R.H. Hadfield, Superconducting nanowire single-photon detectors: physics and applications. Supercond. Sci. Technol. 25(6), 063001 (2012)
96.
Zurück zum Zitat E.E. Wollman, V.B. Verma, A.E. Lita, W.H. Farr, M.D. Shaw, R.P. Mirin, S.W. Nam, Kilopixel array of superconducting nanowire single-photon detectors. Opt. Express 27(24), 35279–35289 (2019)CrossRef E.E. Wollman, V.B. Verma, A.E. Lita, W.H. Farr, M.D. Shaw, R.P. Mirin, S.W. Nam, Kilopixel array of superconducting nanowire single-photon detectors. Opt. Express 27(24), 35279–35289 (2019)CrossRef
97.
Zurück zum Zitat A.N. McCaughan, K.K. Berggren, A superconducting-nanowire three-terminal electrothermal device. Nano Lett. 14(10), 5748–5753 (2014)CrossRef A.N. McCaughan, K.K. Berggren, A superconducting-nanowire three-terminal electrothermal device. Nano Lett. 14(10), 5748–5753 (2014)CrossRef
98.
Zurück zum Zitat G. Krylov, E.G. Friedman, Sense amplifier for spin-based cryogenic memory cells. IEEE Trans. Appl. Supercond. 29(5), 1–4 (2019). Art no. 1501804 G. Krylov, E.G. Friedman, Sense amplifier for spin-based cryogenic memory cells. IEEE Trans. Appl. Supercond. 29(5), 1–4 (2019). Art no. 1501804
99.
Zurück zum Zitat I. Salameh, E.G. Friedman, S. Kvatinsky, Superconductive logic using 2\(\phi \) Josephson junctions with half flux quantum pulses. IEEE Trans. Circuits Syst. II Express Briefs 69(5), 2533–2537 (2022) I. Salameh, E.G. Friedman, S. Kvatinsky, Superconductive logic using 2\(\phi \) Josephson junctions with half flux quantum pulses. IEEE Trans. Circuits Syst. II Express Briefs 69(5), 2533–2537 (2022)
100.
Zurück zum Zitat I.P. Nevirkovets, O. Chernyashevskyy, G.V. Prokopenko, O.A. Mukhanov, J.B. Ketterson, Control of supercurrent in hybrid superconducting–ferromagnetic transistors. IEEE Trans. Appl. Supercond. 25(3), 1–5 (2015)CrossRef I.P. Nevirkovets, O. Chernyashevskyy, G.V. Prokopenko, O.A. Mukhanov, J.B. Ketterson, Control of supercurrent in hybrid superconducting–ferromagnetic transistors. IEEE Trans. Appl. Supercond. 25(3), 1–5 (2015)CrossRef
101.
Zurück zum Zitat I.P. Nevirkovets, O. Chernyashevskyy, G.V. Prokopenko, O.A. Mukhanov, J.B. Ketterson, Superconducting-ferromagnetic transistor. IEEE Trans. Appl. Supercond. 24(4), 1–6 (2014)CrossRef I.P. Nevirkovets, O. Chernyashevskyy, G.V. Prokopenko, O.A. Mukhanov, J.B. Ketterson, Superconducting-ferromagnetic transistor. IEEE Trans. Appl. Supercond. 24(4), 1–6 (2014)CrossRef
102.
Zurück zum Zitat S. Faris, S. Raider, W. Gallagher, R. Drake, Quiteron. IEEE Trans. Magn. 19(3), 1293–1295 (1983)CrossRef S. Faris, S. Raider, W. Gallagher, R. Drake, Quiteron. IEEE Trans. Magn. 19(3), 1293–1295 (1983)CrossRef
103.
Zurück zum Zitat S. Shafranjuk, I.P. Nevirkovets, O.A. Mukhanov, J.B. Ketterson, Control of superconductivity in a hybrid superconducting/ferromagnetic multilayer using nonequilibrium tunneling injection. Phys. Rev. Appl. 6(2), 024018 (2016) S. Shafranjuk, I.P. Nevirkovets, O.A. Mukhanov, J.B. Ketterson, Control of superconductivity in a hybrid superconducting/ferromagnetic multilayer using nonequilibrium tunneling injection. Phys. Rev. Appl. 6(2), 024018 (2016)
104.
Zurück zum Zitat G. Krylov, E.G. Friedman, Behavioral verilog-A model of superconductor-ferromagnetic transistor, in Proceedings of the IEEE International Symposium on Circuits and Systems (2018) G. Krylov, E.G. Friedman, Behavioral verilog-A model of superconductor-ferromagnetic transistor, in Proceedings of the IEEE International Symposium on Circuits and Systems (2018)
105.
Zurück zum Zitat A.I. Buzdin, Proximity effects in superconductor-ferromagnet heterostructures. Rev. Mod. Phys. 77(3), 935–976 (2005)CrossRef A.I. Buzdin, Proximity effects in superconductor-ferromagnet heterostructures. Rev. Mod. Phys. 77(3), 935–976 (2005)CrossRef
Metadaten
Titel
Physics and Devices of Superconductive Electronics
verfasst von
Gleb Krylov
Tahereh Jabbari
Eby G. Friedman
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-47475-0_2

Neuer Inhalt