Skip to main content

2024 | OriginalPaper | Buchkapitel

4. Principals of Superconductive Circuits

verfasst von : Gleb Krylov, Tahereh Jabbari, Eby G. Friedman

Erschienen in: Single Flux Quantum Integrated Circuit Design

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Superconductive circuits are introduced in this chapter. Both analog and digital circuits are described, and memory topologies are presented. Among the analog devices, one- and two-junction SQUIDs are introduced along with characteristic expressions and common applications. Different families of superconductive digital logic, such as voltage level logic, rapid single flux quantum logic, reciprocal quantum logic, and adiabatic quantum flux parametron logic, are described. The basic principles of adiabatic and reversible computing are also reviewed. Finally, different types of cryogenic memory are introduced, and the advantages and disadvantages of these memory topologies are discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
5.
Zurück zum Zitat D.A. Buck, The cryotron – a superconductive computer component. Proc. IRE 44(4), 482–493 (1956)CrossRef D.A. Buck, The cryotron – a superconductive computer component. Proc. IRE 44(4), 482–493 (1956)CrossRef
18.
Zurück zum Zitat W.J. Gallagher, E.P. Harris, M.B. Ketchen, Superconductivity at IBM – a centennial review: part I – superconducting computer and device applications, in Proceedings of the IEEE/CSC ESAS European Superconductivity News Forum, vol. 21 (2012), pp. 1–34 W.J. Gallagher, E.P. Harris, M.B. Ketchen, Superconductivity at IBM – a centennial review: part I – superconducting computer and device applications, in Proceedings of the IEEE/CSC ESAS European Superconductivity News Forum, vol. 21 (2012), pp. 1–34
23.
Zurück zum Zitat F. Shanehsazzadeh, T. Jabbari, F. Qaderi, M. Fardmanesh, Integrated monolayer planar flux transformer and resonator tank circuit for high- T\({ }_C\) RF-SQUID magnetometer. IEEE Trans. Appl. Supercond. 27(4), 1–4 (2017) F. Shanehsazzadeh, T. Jabbari, F. Qaderi, M. Fardmanesh, Integrated monolayer planar flux transformer and resonator tank circuit for high- T\({ }_C\) RF-SQUID magnetometer. IEEE Trans. Appl. Supercond. 27(4), 1–4 (2017)
25.
Zurück zum Zitat K.K. Likharev, V.K. Semenov, RSFQ logic/memory family: a new Josephson-junction technology for sub-terahertz-clock-frequency digital systems. IEEE Trans. Appl. Supercond. 1(1), 3–28 (1991)CrossRef K.K. Likharev, V.K. Semenov, RSFQ logic/memory family: a new Josephson-junction technology for sub-terahertz-clock-frequency digital systems. IEEE Trans. Appl. Supercond. 1(1), 3–28 (1991)CrossRef
26.
Zurück zum Zitat M. Hosoya, W. Hioe, J. Casas, R. Kamikawai, Y. Harada, Y. Wada, H. Nakane, R. Suda, E. Goto, Quantum flux parametron: a single quantum flux device for Josephson supercomputer. IEEE Trans. Appl. Supercond. 1(2), 77–89 (1991)CrossRef M. Hosoya, W. Hioe, J. Casas, R. Kamikawai, Y. Harada, Y. Wada, H. Nakane, R. Suda, E. Goto, Quantum flux parametron: a single quantum flux device for Josephson supercomputer. IEEE Trans. Appl. Supercond. 1(2), 77–89 (1991)CrossRef
38.
Zurück zum Zitat S. Whiteley, E. Mlinar, G. Krylov, T. Jabbari, E.G. Friedman, J. Kawa, An SFQ digital circuit technology with fully-passive transmission line interconnect, in Proceedings of the Applied Superconductivity Conference (2020) S. Whiteley, E. Mlinar, G. Krylov, T. Jabbari, E.G. Friedman, J. Kawa, An SFQ digital circuit technology with fully-passive transmission line interconnect, in Proceedings of the Applied Superconductivity Conference (2020)
39.
Zurück zum Zitat T. Jabbari, G. Krylov, S. Whiteley, E. Mlinar, J Kawa, E.G. Friedman, Interconnect routing for large scale RSFQ circuits. IEEE Trans. Appl. Supercond. 29(5), 1102805 (2019) T. Jabbari, G. Krylov, S. Whiteley, E. Mlinar, J Kawa, E.G. Friedman, Interconnect routing for large scale RSFQ circuits. IEEE Trans. Appl. Supercond. 29(5), 1102805 (2019)
41.
Zurück zum Zitat T. Jabbari, E.G. Friedman, Global interconnects in VLSI complexity single flux quantum systems, in Proceedings of the Workshop on System-Level Interconnect: Problems and Pathfinding Workshop (2020), pp. 1–7 T. Jabbari, E.G. Friedman, Global interconnects in VLSI complexity single flux quantum systems, in Proceedings of the Workshop on System-Level Interconnect: Problems and Pathfinding Workshop (2020), pp. 1–7
42.
Zurück zum Zitat T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Repeater insertion in SFQ interconnect. IEEE Trans. Appl. Supercond. 30(8), 5400508 (2020) T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Repeater insertion in SFQ interconnect. IEEE Trans. Appl. Supercond. 30(8), 5400508 (2020)
43.
Zurück zum Zitat W. Chen, A.V. Rylyakov, V. Patel, J.E. Lukens, K.K. Likharev, Rapid single flux quantum T-flip flop operating up to 770 GHz. IEEE Trans. Appl. Supercond. 9(2), 3212–3215 (1999)CrossRef W. Chen, A.V. Rylyakov, V. Patel, J.E. Lukens, K.K. Likharev, Rapid single flux quantum T-flip flop operating up to 770 GHz. IEEE Trans. Appl. Supercond. 9(2), 3212–3215 (1999)CrossRef
44.
Zurück zum Zitat O.A. Mukhanov, D. Gupta, A.M. Kadin, V.K. Semenov, Superconductor analog-to-digital converters. Proc. IEEE 92(10), 1564–1584 (2004)CrossRef O.A. Mukhanov, D. Gupta, A.M. Kadin, V.K. Semenov, Superconductor analog-to-digital converters. Proc. IEEE 92(10), 1564–1584 (2004)CrossRef
45.
Zurück zum Zitat N. Takeuchi, Y. Yamanashi, N. Yoshikawa, Reversible logic gate using adiabatic superconducting devices. Sci. Rep. 4, 6354 (2014)CrossRef N. Takeuchi, Y. Yamanashi, N. Yoshikawa, Reversible logic gate using adiabatic superconducting devices. Sci. Rep. 4, 6354 (2014)CrossRef
47.
Zurück zum Zitat T. Jabbari, E.G. Friedman, SFQ/DQFP interface circuits. IEEE Trans. Appl. Supercond. 33(5), 1–5 (2023) T. Jabbari, E.G. Friedman, SFQ/DQFP interface circuits. IEEE Trans. Appl. Supercond. 33(5), 1–5 (2023)
48.
Zurück zum Zitat J.M. Lockhart, SQUID readout and ultra-low magnetic fields for gravity probe-B (GP-B). Proc. SPIE Cryog. Opt. Syst. Instrum. II 619, 148–156 (1986) J.M. Lockhart, SQUID readout and ultra-low magnetic fields for gravity probe-B (GP-B). Proc. SPIE Cryog. Opt. Syst. Instrum. II 619, 148–156 (1986)
57.
Zurück zum Zitat T. Jabbari, E.G. Friedman, Transmission lines in VLSI complexity single flux quantum systems, in Proceedings of the PhotonIcs and Electromagnetics Research Symposium (2023), pp. 1749–1759 T. Jabbari, E.G. Friedman, Transmission lines in VLSI complexity single flux quantum systems, in Proceedings of the PhotonIcs and Electromagnetics Research Symposium (2023), pp. 1749–1759
65.
Zurück zum Zitat T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Resonance effects in single flux quantum interconnect, in Proceedings of the Government Microcircuit Applications and Critical Technology Conference (2020), pp. 1–5 T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Resonance effects in single flux quantum interconnect, in Proceedings of the Government Microcircuit Applications and Critical Technology Conference (2020), pp. 1–5
87.
Zurück zum Zitat T. Jabbari, E.G. Friedman, Surface inductance of superconductive striplines. IEEE Trans. Circuits Syst. II Express Briefs 69(6), 2952–2956 (2022) T. Jabbari, E.G. Friedman, Surface inductance of superconductive striplines. IEEE Trans. Circuits Syst. II Express Briefs 69(6), 2952–2956 (2022)
88.
Zurück zum Zitat K.K. Likharev, Dynamics of Josephson Junctions and Circuits (Gordon and Breach Science Publishers, London, 1986) K.K. Likharev, Dynamics of Josephson Junctions and Circuits (Gordon and Breach Science Publishers, London, 1986)
97.
Zurück zum Zitat A.N. McCaughan, K.K. Berggren, A superconducting-nanowire three-terminal electrothermal device. Nano Lett. 14(10), 5748–5753 (2014)CrossRef A.N. McCaughan, K.K. Berggren, A superconducting-nanowire three-terminal electrothermal device. Nano Lett. 14(10), 5748–5753 (2014)CrossRef
98.
Zurück zum Zitat G. Krylov, E.G. Friedman, Sense amplifier for spin-based cryogenic memory cells. IEEE Trans. Appl. Supercond. 29(5), 1–4 (2019). Art no. 1501804 G. Krylov, E.G. Friedman, Sense amplifier for spin-based cryogenic memory cells. IEEE Trans. Appl. Supercond. 29(5), 1–4 (2019). Art no. 1501804
131.
Zurück zum Zitat G. Krylov, E.G. Friedman, Design methodology for distributed large-scale ERSFQ bias networks. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 28(11), 2438–2447 (2020) G. Krylov, E.G. Friedman, Design methodology for distributed large-scale ERSFQ bias networks. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 28(11), 2438–2447 (2020)
148.
Zurück zum Zitat T. Jabbari, H. Zandi, F. Foroughi, A. Bozbey, M. Fardmanesh, Investigation of readout cell configuration and parameters on functionality and stability of bi-directional RSFQ TFF. IEEE Trans. Appl. Supercond. 26(3), 1–5 (2016)CrossRef T. Jabbari, H. Zandi, F. Foroughi, A. Bozbey, M. Fardmanesh, Investigation of readout cell configuration and parameters on functionality and stability of bi-directional RSFQ TFF. IEEE Trans. Appl. Supercond. 26(3), 1–5 (2016)CrossRef
149.
Zurück zum Zitat G. Krylov, E.G. Friedman, Bias distribution in ERSFQ VLSI circuits, in Proceedings of the IEEE International Symposium on Circuits and Systems (2020), pp. 1–5 G. Krylov, E.G. Friedman, Bias distribution in ERSFQ VLSI circuits, in Proceedings of the IEEE International Symposium on Circuits and Systems (2020), pp. 1–5
151.
Zurück zum Zitat T. Jabbari, H. Zandi, M. Fardmanesh, Frequency limitation due to switching transition of the bias current in bidirectional RSFQ logic. J. Supercond. Novel Magn. 30, 3619–3624 (2017)CrossRef T. Jabbari, H. Zandi, M. Fardmanesh, Frequency limitation due to switching transition of the bias current in bidirectional RSFQ logic. J. Supercond. Novel Magn. 30, 3619–3624 (2017)CrossRef
153.
Zurück zum Zitat S.K. Tolpygo, V. Bolkhovsky, D.E. Oates, R. Rastogi, S. Zarr, A.L. Day, T.J. Weir, A. Wynn, L.M. Johnson, Superconductor electronics fabrication process with MoNx kinetic inductors and self-shunted Josephson junctions. IEEE Trans. Appl. Supercond. 28(4), 1–12 (2018)CrossRef S.K. Tolpygo, V. Bolkhovsky, D.E. Oates, R. Rastogi, S. Zarr, A.L. Day, T.J. Weir, A. Wynn, L.M. Johnson, Superconductor electronics fabrication process with MoNx kinetic inductors and self-shunted Josephson junctions. IEEE Trans. Appl. Supercond. 28(4), 1–12 (2018)CrossRef
160.
Zurück zum Zitat J. Matisoo, The tunneling cryotron – a superconductive logic element based on electron tunneling. Proc. IEEE 55(2), 172–180 (1967)CrossRef J. Matisoo, The tunneling cryotron – a superconductive logic element based on electron tunneling. Proc. IEEE 55(2), 172–180 (1967)CrossRef
161.
Zurück zum Zitat K.K. Likharev, O.A. Mukhanov, V.K. Semenov, Resistive single flux quantum logic for the Josephson-junction digital technology, in Proceedings of the Third International Conference on Superconducting Quantum Devices (1985), pp. 1103–1108 K.K. Likharev, O.A. Mukhanov, V.K. Semenov, Resistive single flux quantum logic for the Josephson-junction digital technology, in Proceedings of the Third International Conference on Superconducting Quantum Devices (1985), pp. 1103–1108
162.
Zurück zum Zitat Q.P. Herr, A.Y. Herr, O.T. Oberg, A.G. Ioannidis, Ultra-low-power superconductor logic. J. Appl. Phys. 109(10), 103903 (2011) Q.P. Herr, A.Y. Herr, O.T. Oberg, A.G. Ioannidis, Ultra-low-power superconductor logic. J. Appl. Phys. 109(10), 103903 (2011)
163.
Zurück zum Zitat S. Kumar, W.F. Avrin, B.R. Whitecotton, NMR of room temperature samples with a flux-locked DC SQUID. IEEE Trans. Magn. 32(6), 5261–5264 (1996)CrossRef S. Kumar, W.F. Avrin, B.R. Whitecotton, NMR of room temperature samples with a flux-locked DC SQUID. IEEE Trans. Magn. 32(6), 5261–5264 (1996)CrossRef
164.
Zurück zum Zitat A.H. Silver, J.E. Zimmerman, Quantum transitions and loss in multiply connected superconductors. Phys. Rev. Lett. 15, 888–891 (1965)CrossRef A.H. Silver, J.E. Zimmerman, Quantum transitions and loss in multiply connected superconductors. Phys. Rev. Lett. 15, 888–891 (1965)CrossRef
165.
Zurück zum Zitat T. Van Duzer, C.W. Turner, Principles of Superconductive Devices and Circuits, 2nd edn. (Prentice Hall, Hoboken, 1999) T. Van Duzer, C.W. Turner, Principles of Superconductive Devices and Circuits, 2nd edn. (Prentice Hall, Hoboken, 1999)
166.
Zurück zum Zitat K.K. Likharev, Dynamics of some single flux quantum devices: I. Parametric quantron. IEEE Trans. Magn. 13(1), 242–244 (1977)CrossRef K.K. Likharev, Dynamics of some single flux quantum devices: I. Parametric quantron. IEEE Trans. Magn. 13(1), 242–244 (1977)CrossRef
167.
Zurück zum Zitat R.L. Fagaly, Superconducting quantum interference device instruments and applications. Rev. Sci. Instrum. 77(10), 101101 (2006) R.L. Fagaly, Superconducting quantum interference device instruments and applications. Rev. Sci. Instrum. 77(10), 101101 (2006)
168.
Zurück zum Zitat R.C. Jaklevic, J. Lambe, A.H. Silver, J.E. Mercereau, Quantum interference effects in Josephson tunneling. Phys. Rev. Lett. 12(7), 159 (1964) R.C. Jaklevic, J. Lambe, A.H. Silver, J.E. Mercereau, Quantum interference effects in Josephson tunneling. Phys. Rev. Lett. 12(7), 159 (1964)
169.
Zurück zum Zitat T.R. Gheewala, A 30-ps Josephson current injection logic (CIL). IEEE J. Solid-State Circuits 14(5), 787–793 (1979)CrossRef T.R. Gheewala, A 30-ps Josephson current injection logic (CIL). IEEE J. Solid-State Circuits 14(5), 787–793 (1979)CrossRef
170.
Zurück zum Zitat H.H. Zappe, A single flux quantum Josephson junction memory cell. Appl. Phys. Lett. 25(7), 424–426 (1974)CrossRef H.H. Zappe, A single flux quantum Josephson junction memory cell. Appl. Phys. Lett. 25(7), 424–426 (1974)CrossRef
171.
Zurück zum Zitat E. Salman, E.G. Friedman, High Performance Integrated Circuit Design (McGraw-Hill Publishers, New York City, 2012) E. Salman, E.G. Friedman, High Performance Integrated Circuit Design (McGraw-Hill Publishers, New York City, 2012)
172.
Zurück zum Zitat T.R. Gheewala, Josephson logic circuits based on nonlinear current injection in interferometer devices. Appl. Phys. Lett. 33(8), 781–783 (1978)CrossRef T.R. Gheewala, Josephson logic circuits based on nonlinear current injection in interferometer devices. Appl. Phys. Lett. 33(8), 781–783 (1978)CrossRef
173.
Zurück zum Zitat M. Klein, D.J. Herrell, Sub-100 ps experimental Josephson interferometer logic gates. IEEE J. Solid-State Circuits 13(5), 577–583 (1978)CrossRef M. Klein, D.J. Herrell, Sub-100 ps experimental Josephson interferometer logic gates. IEEE J. Solid-State Circuits 13(5), 577–583 (1978)CrossRef
174.
Zurück zum Zitat T.A. Fulton, R.C. Dynes, Switching to zero voltage in Josephson tunnel junctions. Solid State Commun. 9(13), 1069–1073 (1971)CrossRef T.A. Fulton, R.C. Dynes, Switching to zero voltage in Josephson tunnel junctions. Solid State Commun. 9(13), 1069–1073 (1971)CrossRef
175.
Zurück zum Zitat R. Jewett, T. Van Duzer, Low-probability punchthrough in Josephson junctions. IEEE Trans. Magn. 17(1), 599–602 (1981)CrossRef R. Jewett, T. Van Duzer, Low-probability punchthrough in Josephson junctions. IEEE Trans. Magn. 17(1), 599–602 (1981)CrossRef
176.
Zurück zum Zitat R. Tuyl, C. Liechti, High-speed integrated logic with GaAs MESFET’s. IEEE J. Solid-State Circuits 9(5), 269–276 (1974)CrossRef R. Tuyl, C. Liechti, High-speed integrated logic with GaAs MESFET’s. IEEE J. Solid-State Circuits 9(5), 269–276 (1974)CrossRef
177.
Zurück zum Zitat O.T. Oberg, Superconducting Logic Circuits Operating with Reciprocal Magnetic Flux Quanta, Ph.D. Dissertation, University of Maryland, College Park, Maryland, 2011 O.T. Oberg, Superconducting Logic Circuits Operating with Reciprocal Magnetic Flux Quanta, Ph.D. Dissertation, University of Maryland, College Park, Maryland, 2011
178.
Zurück zum Zitat I.I. Soloviev, N.V. Klenov, S.V. Bakurskiy, M.Y. Kupriyanov, A.L. Gudkov, A.S. Sidorenko, Beyond Moore’s technologies: operation principles of a superconductor alternative. Beilstein J. Nanotechnol. 8, 2689–2710 (2017)CrossRef I.I. Soloviev, N.V. Klenov, S.V. Bakurskiy, M.Y. Kupriyanov, A.L. Gudkov, A.S. Sidorenko, Beyond Moore’s technologies: operation principles of a superconductor alternative. Beilstein J. Nanotechnol. 8, 2689–2710 (2017)CrossRef
179.
Zurück zum Zitat A.M. Kadin, R.J. Webber, S. Sarwana, Effects of superconducting return currents on RSFQ circuit performance. IEEE Trans. Appl. Supercond. 15(2), 280–283 (2005)CrossRef A.M. Kadin, R.J. Webber, S. Sarwana, Effects of superconducting return currents on RSFQ circuit performance. IEEE Trans. Appl. Supercond. 15(2), 280–283 (2005)CrossRef
180.
Zurück zum Zitat A.Y. Herr, Q.P. Herr, O.T. Oberg, O. Naaman, J.X. Przybysz, P. Borodulin, S.B. Shauck, An 8-bit carry look-ahead adder with 150 ps latency and sub-microwatt power dissipation at 10 GHz. J. Appl. Phys. 113(3), 033911 (2013) A.Y. Herr, Q.P. Herr, O.T. Oberg, O. Naaman, J.X. Przybysz, P. Borodulin, S.B. Shauck, An 8-bit carry look-ahead adder with 150 ps latency and sub-microwatt power dissipation at 10 GHz. J. Appl. Phys. 113(3), 033911 (2013)
181.
Zurück zum Zitat V.K. Semenov, Y.A. Polyakov, S.K. Tolpygo, Very large scale integration of Josephson-junction-based superconductor random access memories. IEEE Trans. Appl. Supercond. 29(5), 1–9 (2019) V.K. Semenov, Y.A. Polyakov, S.K. Tolpygo, Very large scale integration of Josephson-junction-based superconductor random access memories. IEEE Trans. Appl. Supercond. 29(5), 1–9 (2019)
182.
Zurück zum Zitat R. Landauer, Irreversibility and heat generation in the computing process. IBM J. Res. Develop. 5(3), 183–191 (1961)MathSciNetCrossRef R. Landauer, Irreversibility and heat generation in the computing process. IBM J. Res. Develop. 5(3), 183–191 (1961)MathSciNetCrossRef
183.
Zurück zum Zitat J.P.S. Peterson, R.S. Sarthour, A.M. Souza, I.S. Oliveira, J. Goold, K. Modi, D.O. Soares-Pinto, L.C. Céleri, Experimental demonstration of information to energy conversion in a quantum system at the Landauer limit. Proc. R. Soc. A Math. Phys. Eng. Sci. 472(2188), 20150813 (2016) J.P.S. Peterson, R.S. Sarthour, A.M. Souza, I.S. Oliveira, J. Goold, K. Modi, D.O. Soares-Pinto, L.C. Céleri, Experimental demonstration of information to energy conversion in a quantum system at the Landauer limit. Proc. R. Soc. A Math. Phys. Eng. Sci. 472(2188), 20150813 (2016)
184.
185.
Zurück zum Zitat Y. Harada, H. Nakane, N. Miyamoto, U. Kawabe, E. Goto, T. Soma, Basic operations of the quantum flux parametron. IEEE Trans. Magn. 23(5), 3801–3807 (1987)CrossRef Y. Harada, H. Nakane, N. Miyamoto, U. Kawabe, E. Goto, T. Soma, Basic operations of the quantum flux parametron. IEEE Trans. Magn. 23(5), 3801–3807 (1987)CrossRef
186.
Zurück zum Zitat N. Takeuchi, D. Ozawa, Y. Yamanashi, N. Yoshikawa, An adiabatic quantum flux parametron as an ultra-low-power logic device. Supercond. Sci. Technol. 26(3), 035010 (2013) N. Takeuchi, D. Ozawa, Y. Yamanashi, N. Yoshikawa, An adiabatic quantum flux parametron as an ultra-low-power logic device. Supercond. Sci. Technol. 26(3), 035010 (2013)
187.
Zurück zum Zitat O. Chen, R. Cai, Ya. Wang, F. Ke, Ta. Yamae, R. Saito, N. Takeuchi, N. Yoshikawa, Adiabatic quantum-flux-parametron: towards building extremely energy-efficient circuits and systems. Sci. Rep. 9(10514), 1–10 (2019) O. Chen, R. Cai, Ya. Wang, F. Ke, Ta. Yamae, R. Saito, N. Takeuchi, N. Yoshikawa, Adiabatic quantum-flux-parametron: towards building extremely energy-efficient circuits and systems. Sci. Rep. 9(10514), 1–10 (2019)
188.
Zurück zum Zitat T.D. Clark, J.P. Baldwin, Superconducting memory device using Josephson junctions. Electron. Lett. 3(5), 178–179 (1967)CrossRef T.D. Clark, J.P. Baldwin, Superconducting memory device using Josephson junctions. Electron. Lett. 3(5), 178–179 (1967)CrossRef
189.
Zurück zum Zitat S. Tahara, I. Ishida, Y. Ajisawa, Y. Wada, Experimental vortex transitional nondestructive read-out Josephson memory cell. J. Appl. Phys. 65(2), 851–856 (1989)CrossRef S. Tahara, I. Ishida, Y. Ajisawa, Y. Wada, Experimental vortex transitional nondestructive read-out Josephson memory cell. J. Appl. Phys. 65(2), 851–856 (1989)CrossRef
190.
Zurück zum Zitat Y. Kim, H. Kwon, S. Doo, M. Ahn, Y. Kim, Y. Lee, D. Kang, S. Do, C. Lee, G. Cho, J. Park, J. Kim, K. Park, S. Oh, S. Lee, J. Yu, K. Yu, C. Jeon, S. Kim, H. Park, J. Lee, S. Cho, K. Park, Y. Kim, Y. Seo, C. Shin, C. Lee, S. Bang, Y. Park, S. Choi, B. Kim, G. Han, S. Bae, H. Kwon, J. Choi, Y. Sohn, K. Park, S. Jang, G. Jin, A 16-Gb, 18-Gb/s/pin GDDR6 DRAM with per-bit trainable single-ended DFE and PLL-less clocking. IEEE J. Solid-State Circuits 54(1), 197–209 (2019)CrossRef Y. Kim, H. Kwon, S. Doo, M. Ahn, Y. Kim, Y. Lee, D. Kang, S. Do, C. Lee, G. Cho, J. Park, J. Kim, K. Park, S. Oh, S. Lee, J. Yu, K. Yu, C. Jeon, S. Kim, H. Park, J. Lee, S. Cho, K. Park, Y. Kim, Y. Seo, C. Shin, C. Lee, S. Bang, Y. Park, S. Choi, B. Kim, G. Han, S. Bae, H. Kwon, J. Choi, Y. Sohn, K. Park, S. Jang, G. Jin, A 16-Gb, 18-Gb/s/pin GDDR6 DRAM with per-bit trainable single-ended DFE and PLL-less clocking. IEEE J. Solid-State Circuits 54(1), 197–209 (2019)CrossRef
191.
Zurück zum Zitat N. Yoshikawa, T. Tomida, M. Tokuda, Q. Liu, X. Meng, S.R. Whiteley, T. Van Duzer, Characterization of 4 K CMOS devices and circuits for hybrid Josephson-CMOS systems. IEEE Trans. Appl. Supercond. 15(2), 267–271 (2005)CrossRef N. Yoshikawa, T. Tomida, M. Tokuda, Q. Liu, X. Meng, S.R. Whiteley, T. Van Duzer, Characterization of 4 K CMOS devices and circuits for hybrid Josephson-CMOS systems. IEEE Trans. Appl. Supercond. 15(2), 267–271 (2005)CrossRef
192.
Zurück zum Zitat W.F. Clark, B. El-Kareh, R.G. Pires, S.L. Titcomb, R.L. Anderson, Low temperature CMOS - a brief review. IEEE Trans. Compon. Hybrids Manuf. Technol. 15(3), 397–404 (1992)CrossRef W.F. Clark, B. El-Kareh, R.G. Pires, S.L. Titcomb, R.L. Anderson, Low temperature CMOS - a brief review. IEEE Trans. Compon. Hybrids Manuf. Technol. 15(3), 397–404 (1992)CrossRef
193.
Zurück zum Zitat H. Suzuki, A. Inoue, T. Imamura, S. Hasuo, A Josephson driver to interface Josephson junctions to semiconductor transistors, in Proceedings of the IEEE International Electron Devices Meeting (1988), pp. 290–293 H. Suzuki, A. Inoue, T. Imamura, S. Hasuo, A Josephson driver to interface Josephson junctions to semiconductor transistors, in Proceedings of the IEEE International Electron Devices Meeting (1988), pp. 290–293
194.
Zurück zum Zitat T. Ortlepp, S.R. Whiteley, L. Zheng, X. Meng, T. Van Duzer, High-speed hybrid superconductor-to-semiconductor interface circuit with ultra-low power consumption. IEEE Trans. Appl. Supercond. 23(3), 1400104 (2013) T. Ortlepp, S.R. Whiteley, L. Zheng, X. Meng, T. Van Duzer, High-speed hybrid superconductor-to-semiconductor interface circuit with ultra-low power consumption. IEEE Trans. Appl. Supercond. 23(3), 1400104 (2013)
195.
Zurück zum Zitat T. Van Duzer, L. Zheng, S.R. Whiteley, H. Kim, J. Kim, X. Meng, T. Ortlepp, 64-kb hybrid Josephson-CMOS 4 Kelvin RAM with 400 ps access time and 12 mW read power. IEEE Trans. Appl. Supercond. 23(3), 1700504 (2013) T. Van Duzer, L. Zheng, S.R. Whiteley, H. Kim, J. Kim, X. Meng, T. Ortlepp, 64-kb hybrid Josephson-CMOS 4 Kelvin RAM with 400 ps access time and 12 mW read power. IEEE Trans. Appl. Supercond. 23(3), 1700504 (2013)
196.
Zurück zum Zitat H.P. Wong, S. Salahuddin, Memory leads the way to better computing. Nat. Nanotechnol. 10(3), 191–194 (2015)CrossRef H.P. Wong, S. Salahuddin, Memory leads the way to better computing. Nat. Nanotechnol. 10(3), 191–194 (2015)CrossRef
197.
Zurück zum Zitat L. Ye, D.B. Gopman, L. Rehm, D. Backes, G. Wolf, T. Ohki, A.F. Kirichenko, I.V. Vernik, O.A. Mukhanov, A.D. Kent, Spin-transfer switching of orthogonal spin-valve devices at cryogenic temperatures. J. Appl. Phys. 115(17), 17C725 (2014) L. Ye, D.B. Gopman, L. Rehm, D. Backes, G. Wolf, T. Ohki, A.F. Kirichenko, I.V. Vernik, O.A. Mukhanov, A.D. Kent, Spin-transfer switching of orthogonal spin-valve devices at cryogenic temperatures. J. Appl. Phys. 115(17), 17C725 (2014)
198.
Zurück zum Zitat L. Liu, C.-F. Pai, Y. Li, H.W. Tseng, D.C. Ralph, R.A. Buhrman, Spin-torque switching with the giant spin hall effect of tantalum. Science 336(6081), 555–558 (2012)CrossRef L. Liu, C.-F. Pai, Y. Li, H.W. Tseng, D.C. Ralph, R.A. Buhrman, Spin-torque switching with the giant spin hall effect of tantalum. Science 336(6081), 555–558 (2012)CrossRef
199.
Zurück zum Zitat M. Nguyen, G.J. Ribeill, M.V. Gustafsson, S. Shi, S.V. Aradhya, A.P. Wagner, L.M. Ranzani, L. Zhu, R. Baghdadi, B. Butters, E. Toomey, M. Colangelo, P.A. Truitt, A. Jafari-Salim, D. McAllister, D. Yohannes, S.R. Cheng, R. Lazarus, O. Mukhanov, K.K. Berggren, R.A. Buhrman, G.E. Rowlands, T.A. Ohki, Cryogenic memory architecture integrating spin hall effect based magnetic memory and superconductive cryotron devices. Sci. Rep. 10(1), 248 (2020) M. Nguyen, G.J. Ribeill, M.V. Gustafsson, S. Shi, S.V. Aradhya, A.P. Wagner, L.M. Ranzani, L. Zhu, R. Baghdadi, B. Butters, E. Toomey, M. Colangelo, P.A. Truitt, A. Jafari-Salim, D. McAllister, D. Yohannes, S.R. Cheng, R. Lazarus, O. Mukhanov, K.K. Berggren, R.A. Buhrman, G.E. Rowlands, T.A. Ohki, Cryogenic memory architecture integrating spin hall effect based magnetic memory and superconductive cryotron devices. Sci. Rep. 10(1), 248 (2020)
Metadaten
Titel
Principals of Superconductive Circuits
verfasst von
Gleb Krylov
Tahereh Jabbari
Eby G. Friedman
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-47475-0_4

Neuer Inhalt