Skip to main content

2024 | OriginalPaper | Buchkapitel

10. SFQ Circuits for Quantum Computing

verfasst von : Gleb Krylov, Tahereh Jabbari, Eby G. Friedman

Erschienen in: Single Flux Quantum Integrated Circuit Design

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Quantum computing is a novel approach to computation that can provide a significant speedup of computationally hard tasks by using special quantum algorithms. Significant scaling of the many cohesive components within a quantum computing system is necessary to achieve quantum advantage for practical tasks. An essential element of any quantum computer is the control and measurement system. Classical superconductive electronics and SFQ circuits in particular can be interfaced with superconductive quantum systems. The performance of SFQ control circuits in terms of fidelity and noise is currently approaching the state-of-the-art as set by conventional control methods. Classical superconductive circuits can be instrumental in the transition to larger scale quantum computers. SFQ circuits can enhance these systems by providing fast, repeated measurements, complex processing, and controlled feedback while introducing low noise and heat load.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
50.
Zurück zum Zitat R. McDermott, M.G. Vavilov, B.L.T. Plourde, F.K. Wilhelm, P.J. Liebermann, O.A. Mukhanov, T.A. Ohki, Quantum–classical interface based on single flux quantum digital logic. Quant. Sci. Technol. 3(2), 024004 (2018) R. McDermott, M.G. Vavilov, B.L.T. Plourde, F.K. Wilhelm, P.J. Liebermann, O.A. Mukhanov, T.A. Ohki, Quantum–classical interface based on single flux quantum digital logic. Quant. Sci. Technol. 3(2), 024004 (2018)
55.
Zurück zum Zitat S. Krinner, S. Storz, P. Kurpiers, P. Magnard, J. Heinsoo, R. Keller, J. Lütolf, C. Eichler, A. Wallraff, Engineering cryogenic setups for 100-qubit scale superconducting circuit systems. EPJ Quant. Technol. 6(2), 1–29 (2019) S. Krinner, S. Storz, P. Kurpiers, P. Magnard, J. Heinsoo, R. Keller, J. Lütolf, C. Eichler, A. Wallraff, Engineering cryogenic setups for 100-qubit scale superconducting circuit systems. EPJ Quant. Technol. 6(2), 1–29 (2019)
131.
Zurück zum Zitat G. Krylov, E.G. Friedman, Design methodology for distributed large-scale ERSFQ bias networks. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 28(11), 2438–2447 (2020) G. Krylov, E.G. Friedman, Design methodology for distributed large-scale ERSFQ bias networks. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 28(11), 2438–2447 (2020)
289.
Zurück zum Zitat P.W. Shor, Algorithms for quantum computation: discrete logarithms and factoring, in Proceedings of the ACM Annual Symposium on Foundations of Computer Science (1994), pp. 124–134 P.W. Shor, Algorithms for quantum computation: discrete logarithms and factoring, in Proceedings of the ACM Annual Symposium on Foundations of Computer Science (1994), pp. 124–134
290.
Zurück zum Zitat L.K. Grover, A fast quantum mechanical algorithm for database search, in Proceedings of the Annual ACM Symposium on Theory of Computing (1996), pp. 212–219 L.K. Grover, A fast quantum mechanical algorithm for database search, in Proceedings of the Annual ACM Symposium on Theory of Computing (1996), pp. 212–219
291.
Zurück zum Zitat M. Brooks, Beyond quantum supremacy: the hunt for useful quantum computers. Nature 574, 19–21 (2019)CrossRef M. Brooks, Beyond quantum supremacy: the hunt for useful quantum computers. Nature 574, 19–21 (2019)CrossRef
292.
Zurück zum Zitat F. Arute et al., Quantum supremacy using a programmable superconducting processor. Nature 574(7779), 505–510 (2019)CrossRef F. Arute et al., Quantum supremacy using a programmable superconducting processor. Nature 574(7779), 505–510 (2019)CrossRef
293.
Zurück zum Zitat Y. Zhou, Z. Zhang, Z. Yin, S. Huai, X. Gu, X. Xu, J. Allcock, F. Liu, G. Xi, Q. Yu, H. Zhang, M. Zhang, H. Li, X. Song, Z. Wang, D. Zheng, S. An, Y. Zheng, S. Zhang, Rapid and unconditional parametric reset protocol for tunable superconducting qubits. Nat. Commun. 12(1), 5924 (2021) Y. Zhou, Z. Zhang, Z. Yin, S. Huai, X. Gu, X. Xu, J. Allcock, F. Liu, G. Xi, Q. Yu, H. Zhang, M. Zhang, H. Li, X. Song, Z. Wang, D. Zheng, S. An, Y. Zheng, S. Zhang, Rapid and unconditional parametric reset protocol for tunable superconducting qubits. Nat. Commun. 12(1), 5924 (2021)
294.
Zurück zum Zitat J. Roffe, Quantum error correction: an introductory guide. Contemp. Phys. 60(3), 226–245 (2019)CrossRef J. Roffe, Quantum error correction: an introductory guide. Contemp. Phys. 60(3), 226–245 (2019)CrossRef
295.
Zurück zum Zitat M. Kjaergaard, M. Schwartz, J. Braumuller, P. Krantz, J.I. Wang, S. Gustavsson, W.D. Oliver, Superconducting qubits: current state of play. Ann. Rev. Condens. Matter Phys. 11, 369–395 (2019)CrossRef M. Kjaergaard, M. Schwartz, J. Braumuller, P. Krantz, J.I. Wang, S. Gustavsson, W.D. Oliver, Superconducting qubits: current state of play. Ann. Rev. Condens. Matter Phys. 11, 369–395 (2019)CrossRef
296.
Zurück zum Zitat P. Krantz, M. Kjaergaard, F. Yan, T.P. Orlando, S. Gustavsson, W.D. Oliver, A quantum engineer’s guide to superconducting qubits. App. Phys. Rev. 6(2), 021318 (2019) P. Krantz, M. Kjaergaard, F. Yan, T.P. Orlando, S. Gustavsson, W.D. Oliver, A quantum engineer’s guide to superconducting qubits. App. Phys. Rev. 6(2), 021318 (2019)
298.
Zurück zum Zitat S.E. Rasmussen, K.S. Christensen, S.P. Pedersen, L.B. Kristensen, T. Bækkegaard, N.J.S. Loft, N.T. Zinner, Superconducting circuit companion—an introduction with worked examples. Phys. Rev. X Quant. 2, 040204 (2021) S.E. Rasmussen, K.S. Christensen, S.P. Pedersen, L.B. Kristensen, T. Bækkegaard, N.J.S. Loft, N.T. Zinner, Superconducting circuit companion—an introduction with worked examples. Phys. Rev. X Quant. 2, 040204 (2021)
299.
Zurück zum Zitat M.A. Mannucci, N.S. Yanofsky, Quantum Computing for Computer Scientists (Cambridge University Press, Cambridge, 2012) M.A. Mannucci, N.S. Yanofsky, Quantum Computing for Computer Scientists (Cambridge University Press, Cambridge, 2012)
300.
Zurück zum Zitat J.J. Burnett, A. Bengtsson, M. Scigliuzzo, D. Niepce, M. Kudra, P. Delsing, J. Bylander, Decoherence benchmarking of superconducting qubits. NPJ Quant. Inf. 5, 1–8 (2019) J.J. Burnett, A. Bengtsson, M. Scigliuzzo, D. Niepce, M. Kudra, P. Delsing, J. Bylander, Decoherence benchmarking of superconducting qubits. NPJ Quant. Inf. 5, 1–8 (2019)
301.
Zurück zum Zitat C.D. Bruzewicz, Jo. Chiaverini, R. McConnell, J.M. Sage, Trapped-ion quantum computing: progress and challenges. Appl. Phys. Rev. 6(2), 021314 (2019) C.D. Bruzewicz, Jo. Chiaverini, R. McConnell, J.M. Sage, Trapped-ion quantum computing: progress and challenges. Appl. Phys. Rev. 6(2), 021314 (2019)
302.
Zurück zum Zitat G. Burkard, T.D. Ladd, J.M. Nichol, A. Pan, J.R. Petta, Semiconductor spin qubits. Preprint. arXiv:2112.08863 (2021) G. Burkard, T.D. Ladd, J.M. Nichol, A. Pan, J.R. Petta, Semiconductor spin qubits. Preprint. arXiv:2112.08863 (2021)
303.
Zurück zum Zitat J.D. Hidary, Quantum Computing: An Applied Approach, 2nd edn. (Springer, Berlin, 2021)CrossRef J.D. Hidary, Quantum Computing: An Applied Approach, 2nd edn. (Springer, Berlin, 2021)CrossRef
304.
Zurück zum Zitat J.R. Johansson, P.D. Nation, F. Nori, QuTiP 2: a python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 184(4), 1234–1240 (2013)CrossRef J.R. Johansson, P.D. Nation, F. Nori, QuTiP 2: a python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 184(4), 1234–1240 (2013)CrossRef
305.
Zurück zum Zitat K. Luo, W. Huang, Z. Tao, L. Zhang, Y. Zhou, J. Chu, W. Liu, B. Wang, J. Cui, S. Liu, F. Yan, M. Yung, Y. Chen, T. Yan, D. Yu, Experimental realization of two qutrits gate with tunable coupling in superconducting circuits. Phys. Rev. Lett. 130, 030603 (2023)CrossRef K. Luo, W. Huang, Z. Tao, L. Zhang, Y. Zhou, J. Chu, W. Liu, B. Wang, J. Cui, S. Liu, F. Yan, M. Yung, Y. Chen, T. Yan, D. Yu, Experimental realization of two qutrits gate with tunable coupling in superconducting circuits. Phys. Rev. Lett. 130, 030603 (2023)CrossRef
306.
Zurück zum Zitat M. Neeley, M. Ansmann, R.C. Bialczak, M. Hofheinz, E. Lucero, A.D. O’Connell, D. Sank, H. Wang, J. Wenner, A.N. Cleland, M.R. Geller, J.M. Martinis, Emulation of a quantum spin with a superconducting phase qudit. Science 325(5941), 722–725 (2009)CrossRef M. Neeley, M. Ansmann, R.C. Bialczak, M. Hofheinz, E. Lucero, A.D. O’Connell, D. Sank, H. Wang, J. Wenner, A.N. Cleland, M.R. Geller, J.M. Martinis, Emulation of a quantum spin with a superconducting phase qudit. Science 325(5941), 722–725 (2009)CrossRef
307.
Zurück zum Zitat N.J. Glaser, F. Roy, S. Filipp, Controlled-controlled-phase gates for superconducting qubits mediated by a shared tunable coupler. Preprint. arXiv:2206.12392 (2022) N.J. Glaser, F. Roy, S. Filipp, Controlled-controlled-phase gates for superconducting qubits mediated by a shared tunable coupler. Preprint. arXiv:2206.12392 (2022)
308.
Zurück zum Zitat A. Blais, A.L. Grimsmo, S.M. Girvin, A. Wallraff, Circuit quantum electrodynamics. Rev. Mod. Phys. 93, 025005 (2021)MathSciNetCrossRef A. Blais, A.L. Grimsmo, S.M. Girvin, A. Wallraff, Circuit quantum electrodynamics. Rev. Mod. Phys. 93, 025005 (2021)MathSciNetCrossRef
309.
Zurück zum Zitat Y. Nakamura, Y.A. Pashkin, J.S. Tsai, Coherent control of macroscopic quantum states in a single-cooper-pair box. Nature 398(6730), 786–788 (1999)CrossRef Y. Nakamura, Y.A. Pashkin, J.S. Tsai, Coherent control of macroscopic quantum states in a single-cooper-pair box. Nature 398(6730), 786–788 (1999)CrossRef
310.
Zurück zum Zitat J. Koch, T.M. Yu, J. Gambetta, A.A. Houck, D.I. Schuster, J. Majer, A. Blais, M.H. Devoret, S.M. Girvin, R.J. Schoelkopf, Charge-insensitive qubit design derived from the cooper pair box. Phys. Rev. A 76, 042319 (2007)CrossRef J. Koch, T.M. Yu, J. Gambetta, A.A. Houck, D.I. Schuster, J. Majer, A. Blais, M.H. Devoret, S.M. Girvin, R.J. Schoelkopf, Charge-insensitive qubit design derived from the cooper pair box. Phys. Rev. A 76, 042319 (2007)CrossRef
311.
Zurück zum Zitat M.D. Hutchings, J.B. Hertzberg, Y. Liu, N.T. Bronn, G.A. Keefe, M. Brink, J.M. Chow, B.L.T. Plourde, Tunable superconducting qubits with flux-independent coherence. Phys. Rev. Appl. 8, 044003 (2017)CrossRef M.D. Hutchings, J.B. Hertzberg, Y. Liu, N.T. Bronn, G.A. Keefe, M. Brink, J.M. Chow, B.L.T. Plourde, Tunable superconducting qubits with flux-independent coherence. Phys. Rev. Appl. 8, 044003 (2017)CrossRef
312.
Zurück zum Zitat M. Werninghaus, D.J. Egger, F. Roy, S. Machnes, F.K. Wilhelm, S. Filipp, Leakage reduction in fast superconducting qubit gates via optimal control. NPJ Quant. Inf. 7(1), 14 (2021) M. Werninghaus, D.J. Egger, F. Roy, S. Machnes, F.K. Wilhelm, S. Filipp, Leakage reduction in fast superconducting qubit gates via optimal control. NPJ Quant. Inf. 7(1), 14 (2021)
313.
Zurück zum Zitat Y. Chen, C. Neill, P. Roushan, N. Leung, M. Fang, R. Barends, J. Kelly, B. Campbell, Z. Chen, B. Chiaro, A. Dunsworth, E. Jeffrey, A. Megrant, J.Y. Mutus, P.J.J. O’Malley, C.M. Quintana, D. Sank, A. Vainsencher, J. Wenner, T.C. White, M.R. Geller, A.N. Cleland, J.M. Martinis, Qubit architecture with high coherence and fast tunable coupling. Phys. Rev. Lett. 113, 220502 (2014)CrossRef Y. Chen, C. Neill, P. Roushan, N. Leung, M. Fang, R. Barends, J. Kelly, B. Campbell, Z. Chen, B. Chiaro, A. Dunsworth, E. Jeffrey, A. Megrant, J.Y. Mutus, P.J.J. O’Malley, C.M. Quintana, D. Sank, A. Vainsencher, J. Wenner, T.C. White, M.R. Geller, A.N. Cleland, J.M. Martinis, Qubit architecture with high coherence and fast tunable coupling. Phys. Rev. Lett. 113, 220502 (2014)CrossRef
314.
Zurück zum Zitat H.T. Friis, Noise figures of radio receivers. Proc. IRE 32(7), 419–422 (1944)CrossRef H.T. Friis, Noise figures of radio receivers. Proc. IRE 32(7), 419–422 (1944)CrossRef
315.
Zurück zum Zitat E. Cha, N. Wadefalk, G. Moschetti, A. Pourkabirian, J. Stenarson, J. Grahn, A 300-µW cryogenic HEMT LNA for quantum computing, in Proceedings of the IEEE/MTT-S International Microwave Symposium (2020), pp. 1299–1302 E. Cha, N. Wadefalk, G. Moschetti, A. Pourkabirian, J. Stenarson, J. Grahn, A 300-µW cryogenic HEMT LNA for quantum computing, in Proceedings of the IEEE/MTT-S International Microwave Symposium (2020), pp. 1299–1302
316.
Zurück zum Zitat Y. Peng, A. Ruffino, E. Charbon, A cryogenic broadband sub-1-dB NF CMOS low noise amplifier for quantum applications. IEEE J. Solid-State Circuits 56(7), 2040–2053 (2021)s Y. Peng, A. Ruffino, E. Charbon, A cryogenic broadband sub-1-dB NF CMOS low noise amplifier for quantum applications. IEEE J. Solid-State Circuits 56(7), 2040–2053 (2021)s
317.
Zurück zum Zitat L. Chen, H. Li, Y. Lu, C.W. Warren, C.J. Križan, S. Kosen, M. Rommel, S. Ahmed, A. Osman, J. Biznárová, A.F. Roudsari, B. Lienhard, M. Caputo, K. Grigoras, L. Grönberg, J. Govenius, A.F. Kockum, P. Delsing, J. Bylander, G. Tancredi, Transmon qubit readout fidelity at the threshold for quantum error correction without a quantum-limited amplifier. NPJ Quant. Inf. 9(1), 26 (2023) L. Chen, H. Li, Y. Lu, C.W. Warren, C.J. Križan, S. Kosen, M. Rommel, S. Ahmed, A. Osman, J. Biznárová, A.F. Roudsari, B. Lienhard, M. Caputo, K. Grigoras, L. Grönberg, J. Govenius, A.F. Kockum, P. Delsing, J. Bylander, G. Tancredi, Transmon qubit readout fidelity at the threshold for quantum error correction without a quantum-limited amplifier. NPJ Quant. Inf. 9(1), 26 (2023)
318.
Zurück zum Zitat A. Roy, M. Devoret, Introduction to parametric amplification of quantum signals with josephson circuits. C. R. Phys. 17(7), 740–755 (2016)CrossRef A. Roy, M. Devoret, Introduction to parametric amplification of quantum signals with josephson circuits. C. R. Phys. 17(7), 740–755 (2016)CrossRef
319.
Zurück zum Zitat C. Macklin, K. O’Brien, D. Hover, M.E. Schwartz, V. Bolkhovsky, X. Zhang, W.D. Oliver, I. Siddiqi, A near-quantum-limited Josephson traveling-wave parametric amplifier. Science 350(6258), 307–310 (2015)CrossRef C. Macklin, K. O’Brien, D. Hover, M.E. Schwartz, V. Bolkhovsky, X. Zhang, W.D. Oliver, I. Siddiqi, A near-quantum-limited Josephson traveling-wave parametric amplifier. Science 350(6258), 307–310 (2015)CrossRef
320.
Zurück zum Zitat J. Heinsoo, C.K. Andersen, A. Remm, S. Krinner, T. Walter, Y. Salathé, S. Gasparinetti, J. Besse, A. Potočnik, A. Wallraff, C. Eichler, Rapid high-fidelity multiplexed readout of superconducting qubits. Phys. Rev. Appl. 10, 034040 (2018)CrossRef J. Heinsoo, C.K. Andersen, A. Remm, S. Krinner, T. Walter, Y. Salathé, S. Gasparinetti, J. Besse, A. Potočnik, A. Wallraff, C. Eichler, Rapid high-fidelity multiplexed readout of superconducting qubits. Phys. Rev. Appl. 10, 034040 (2018)CrossRef
321.
Zurück zum Zitat K. Peng, M. Naghiloo, J. Wang, G.D. Cunningham, Y. Ye, K.P. O’Brien, Floquet-mode traveling-wave parametric amplifiers. Phys. Rev. X Quant. 3, 020306 (2022) K. Peng, M. Naghiloo, J. Wang, G.D. Cunningham, Y. Ye, K.P. O’Brien, Floquet-mode traveling-wave parametric amplifiers. Phys. Rev. X Quant. 3, 020306 (2022)
322.
Zurück zum Zitat M.J. Feldman, A technique to demonstrate energy level quantization in a SQUID. Phys. B Condens. Matter 284–288, 2127–2128 (2000)CrossRef M.J. Feldman, A technique to demonstrate energy level quantization in a SQUID. Phys. B Condens. Matter 284–288, 2127–2128 (2000)CrossRef
323.
Zurück zum Zitat R.C. Rey-de Castro, M.F. Bocko, A.M. Herr, C.A. Mancini, M.J. Feldman, Design of an RSFQ control circuit to observe MQC on an rf-SQUID. IEEE Trans. Appl. Supercond. 11(1), 1014–1017 (2001)CrossRef R.C. Rey-de Castro, M.F. Bocko, A.M. Herr, C.A. Mancini, M.J. Feldman, Design of an RSFQ control circuit to observe MQC on an rf-SQUID. IEEE Trans. Appl. Supercond. 11(1), 1014–1017 (2001)CrossRef
324.
Zurück zum Zitat P. Rott, M.J. Feldman, Characterization of macroscopic quantum behavior using RSFQ circuitry. IEEE Trans. Appl. Supercond. 11(1), 1010–1013 (2001)CrossRef P. Rott, M.J. Feldman, Characterization of macroscopic quantum behavior using RSFQ circuitry. IEEE Trans. Appl. Supercond. 11(1), 1010–1013 (2001)CrossRef
325.
Zurück zum Zitat V.K. Semenov, D.V. Averin, SFQ control circuits for Josephson Junction Qubits. IEEE Trans. Appl. Supercond. 13(2), 960–965 (2003)CrossRef V.K. Semenov, D.V. Averin, SFQ control circuits for Josephson Junction Qubits. IEEE Trans. Appl. Supercond. 13(2), 960–965 (2003)CrossRef
326.
Zurück zum Zitat J. Hassel, P. Helistö, H. Seppä, J. Kunert, L. Fritzsch, H. Meyer, Rapid single flux quantum devices with selective dissipation for quantum information processing. Appl. Phys. Lett. 89(18), 182514 (2006) J. Hassel, P. Helistö, H. Seppä, J. Kunert, L. Fritzsch, H. Meyer, Rapid single flux quantum devices with selective dissipation for quantum information processing. Appl. Phys. Lett. 89(18), 182514 (2006)
327.
Zurück zum Zitat T.A. Ohki, M. Wulf, M.F. Bocko, Picosecond on-chip qubit control circuitry. IEEE Trans. Appl. Supercond. 15(2), 837–840 (2005)CrossRef T.A. Ohki, M. Wulf, M.F. Bocko, Picosecond on-chip qubit control circuitry. IEEE Trans. Appl. Supercond. 15(2), 837–840 (2005)CrossRef
328.
Zurück zum Zitat M.G. Castellano, F. Chiarello, R. Leoni, G. Torrioli, P. Carelli, C. Cosmelli, M. Khabipov, A.B. Zorin, D. Balashov, Rapid single-flux quantum control of the energy potential in a double SQUID qubit circuit. Supercond. Sci. Technol. 20(6), 500–505 (2007)CrossRef M.G. Castellano, F. Chiarello, R. Leoni, G. Torrioli, P. Carelli, C. Cosmelli, M. Khabipov, A.B. Zorin, D. Balashov, Rapid single-flux quantum control of the energy potential in a double SQUID qubit circuit. Supercond. Sci. Technol. 20(6), 500–505 (2007)CrossRef
329.
Zurück zum Zitat M.W. Johnson, P. Bunyk, F. Maibaum, E. Tolkacheva, A.J. Berkley, E.M. Chapple, R. Harris, J. Johansson, T. Lanting, I. Perminov, E. Ladizinsky, T. Oh, G. Rose, A scalable control system for a superconducting adiabatic quantum optimization processor. Supercond. Sci. Technol. 23(6), 065004 (2010) M.W. Johnson, P. Bunyk, F. Maibaum, E. Tolkacheva, A.J. Berkley, E.M. Chapple, R. Harris, J. Johansson, T. Lanting, I. Perminov, E. Ladizinsky, T. Oh, G. Rose, A scalable control system for a superconducting adiabatic quantum optimization processor. Supercond. Sci. Technol. 23(6), 065004 (2010)
330.
Zurück zum Zitat G. Matsuda, Y. Yamanashi, N. Yoshikawa, Design of an SFQ microwave chopper for controlling quantum bits. IEEE Trans. Appl. Supercond. 17(2), 146–149 (2007)CrossRef G. Matsuda, Y. Yamanashi, N. Yoshikawa, Design of an SFQ microwave chopper for controlling quantum bits. IEEE Trans. Appl. Supercond. 17(2), 146–149 (2007)CrossRef
331.
Zurück zum Zitat N. Takeuchi, D. Ozawa, Y. Yamanashi, N. Yoshikawa, On-chip RSFQ microwave pulse generator using a multi-flux-quantum driver for controlling superconducting qubits. Phys. C Supercond. Appl. 470(20), 1550–1554 (2010)CrossRef N. Takeuchi, D. Ozawa, Y. Yamanashi, N. Yoshikawa, On-chip RSFQ microwave pulse generator using a multi-flux-quantum driver for controlling superconducting qubits. Phys. C Supercond. Appl. 470(20), 1550–1554 (2010)CrossRef
332.
Zurück zum Zitat Y. He, H. Shen, S. Michibayashi, X. Zou, X. Xie, L. Yan, W. Pan, N. Yoshikawa, Compact RSFQ microwave pulse generator based on an integrated RF module for controlling superconducting qubits. Appl. Phys. Lett. 120(6), 062601 (2022) Y. He, H. Shen, S. Michibayashi, X. Zou, X. Xie, L. Yan, W. Pan, N. Yoshikawa, Compact RSFQ microwave pulse generator based on an integrated RF module for controlling superconducting qubits. Appl. Phys. Lett. 120(6), 062601 (2022)
333.
Zurück zum Zitat S. Razmkhah, A. Bozbey, P. Febvre, Superconductor modulation circuits for qubit control at microwave frequencies. Preprint. arXiv:2211.06667 (2022) S. Razmkhah, A. Bozbey, P. Febvre, Superconductor modulation circuits for qubit control at microwave frequencies. Preprint. arXiv:2211.06667 (2022)
334.
Zurück zum Zitat J.A. Brevik, N.E. Flowers-Jacobs, A.E. Fox, E.B. Golden, P.D. Dresselhaus, S.P. Benz, Josephson arbitrary waveform synthesis with multilevel pulse biasing. IEEE Trans. Appl. Supercond. 27(3), 1–7 (2017)CrossRef J.A. Brevik, N.E. Flowers-Jacobs, A.E. Fox, E.B. Golden, P.D. Dresselhaus, S.P. Benz, Josephson arbitrary waveform synthesis with multilevel pulse biasing. IEEE Trans. Appl. Supercond. 27(3), 1–7 (2017)CrossRef
335.
Zurück zum Zitat S.P. Benz, C.A. Hamilton, C.J. Burroughs, T.E. Harvey, L.A. Christian, J.X. Przybysz, Pulse-driven Josephson digital/analog converter [voltage standard]. IEEE Trans. Appl. Supercond. 8(2), 42–47 (1998)CrossRef S.P. Benz, C.A. Hamilton, C.J. Burroughs, T.E. Harvey, L.A. Christian, J.X. Przybysz, Pulse-driven Josephson digital/analog converter [voltage standard]. IEEE Trans. Appl. Supercond. 8(2), 42–47 (1998)CrossRef
336.
Zurück zum Zitat A.J. Sirois, M. Castellanos-Beltran, A.E. Fox, S.P. Benz, P.F. Hopkins, Josephson microwave sources applied to quantum information systems. IEEE Trans. Quant. Eng. 1, 1–7 (2020)CrossRef A.J. Sirois, M. Castellanos-Beltran, A.E. Fox, S.P. Benz, P.F. Hopkins, Josephson microwave sources applied to quantum information systems. IEEE Trans. Quant. Eng. 1, 1–7 (2020)CrossRef
337.
Zurück zum Zitat M.A. Castellanos-Beltran, D.I. Olaya, A.J. Sirois, C.A. Donnelly, P.D. Dresselhaus, S.P. Benz, P.F. Hopkins, Single-flux-quantum multiplier circuits for synthesizing gigahertz waveforms with quantum-based accuracy. IEEE Trans. Appl. Supercond. 31(3), 1–9 (2021)CrossRef M.A. Castellanos-Beltran, D.I. Olaya, A.J. Sirois, C.A. Donnelly, P.D. Dresselhaus, S.P. Benz, P.F. Hopkins, Single-flux-quantum multiplier circuits for synthesizing gigahertz waveforms with quantum-based accuracy. IEEE Trans. Appl. Supercond. 31(3), 1–9 (2021)CrossRef
338.
Zurück zum Zitat R. McDermott, M.G. Vavilov, Accurate qubit control with single flux quantum pulses. Phys. Rev. Appl. 2, 014007 (2014)CrossRef R. McDermott, M.G. Vavilov, Accurate qubit control with single flux quantum pulses. Phys. Rev. Appl. 2, 014007 (2014)CrossRef
339.
Zurück zum Zitat E. Leonard, M.A. Beck, J. Nelson, B.G. Christensen, T. Thorbeck, C. Howington, A. Opremcak, I.V. Pechenezhskiy, K. Dodge, N.P. Dupuis, M.D. Hutchings, J. Ku, F. Schlenker, J. Suttle, C. Wilen, S. Zhu, M.G. Vavilov, B.L.T. Plourde, R. McDermott, Digital coherent control of a superconducting qubit. Phys. Rev. Appl. 11, 014009 (2019)CrossRef E. Leonard, M.A. Beck, J. Nelson, B.G. Christensen, T. Thorbeck, C. Howington, A. Opremcak, I.V. Pechenezhskiy, K. Dodge, N.P. Dupuis, M.D. Hutchings, J. Ku, F. Schlenker, J. Suttle, C. Wilen, S. Zhu, M.G. Vavilov, B.L.T. Plourde, R. McDermott, Digital coherent control of a superconducting qubit. Phys. Rev. Appl. 11, 014009 (2019)CrossRef
340.
Zurück zum Zitat K. Li, R. McDermott, M.G. Vavilov, Hardware-efficient qubit control with single-flux-quantum pulse sequences. Phys. Rev. Appl. 12, 014044 (2019)CrossRef K. Li, R. McDermott, M.G. Vavilov, Hardware-efficient qubit control with single-flux-quantum pulse sequences. Phys. Rev. Appl. 12, 014044 (2019)CrossRef
341.
Zurück zum Zitat P.J. Liebermann, F.K. Wilhelm, Optimal qubit control using single-flux quantum pulses. Phys. Rev. Appl. 6, 024022 (2016)CrossRef P.J. Liebermann, F.K. Wilhelm, Optimal qubit control using single-flux quantum pulses. Phys. Rev. Appl. 6, 024022 (2016)CrossRef
342.
Zurück zum Zitat C. Liu, D.C. Harrison, S. Patel, C.D. Wilen, O. Rafferty, A. Shearrow, A. Ballard, V. Iaia, J. Ku, B.L.T. Plourde, R. McDermott, Quasiparticle poisoning of superconducting qubits from resonant absorption of pair-breaking photons. Preprint. arXiv:2203.06577 (2022) C. Liu, D.C. Harrison, S. Patel, C.D. Wilen, O. Rafferty, A. Shearrow, A. Ballard, V. Iaia, J. Ku, B.L.T. Plourde, R. McDermott, Quasiparticle poisoning of superconducting qubits from resonant absorption of pair-breaking photons. Preprint. arXiv:2203.06577 (2022)
343.
Zurück zum Zitat C. Liu, A. Ballard, D. Olaya, D.R. Schmidt, J. Biesecker, T. Lucas, J. Ullom, S.n. Patel, O. Rafferty, A. Opremcak, K. Dodge, V. Iaia, T. McBroom, J.L. Dubois, P.F. Hopkins, S.P. Benz, B.L.T. Plourde, R. McDermott, Single flux quantum-based digital control of superconducting qubits in a multi-chip module. Preprint. arXiv:2301.05696 (2023) C. Liu, A. Ballard, D. Olaya, D.R. Schmidt, J. Biesecker, T. Lucas, J. Ullom, S.n. Patel, O. Rafferty, A. Opremcak, K. Dodge, V. Iaia, T. McBroom, J.L. Dubois, P.F. Hopkins, S.P. Benz, B.L.T. Plourde, R. McDermott, Single flux quantum-based digital control of superconducting qubits in a multi-chip module. Preprint. arXiv:2301.05696 (2023)
344.
Zurück zum Zitat M.R. Jokar, R. Rines, F.T. Chong, Practical implications of SFQ-based two-qubit gates, in Proceedings of the IEEE International Conference on Quantum Computing and Engineering (2021), pp. 402–412 M.R. Jokar, R. Rines, F.T. Chong, Practical implications of SFQ-based two-qubit gates, in Proceedings of the IEEE International Conference on Quantum Computing and Engineering (2021), pp. 402–412
345.
Zurück zum Zitat A. Lupaşcu, S. Saito, T. Picot, P.C. De Groot, C.J.P.M. Harmans, J.E. Mooij, Quantum non-demolition measurement of a superconducting two-level system. Nat. Phys. 3(2), 119–123 (2007)CrossRef A. Lupaşcu, S. Saito, T. Picot, P.C. De Groot, C.J.P.M. Harmans, J.E. Mooij, Quantum non-demolition measurement of a superconducting two-level system. Nat. Phys. 3(2), 119–123 (2007)CrossRef
346.
Zurück zum Zitat D.V. Averin, K. Rabenstein, V.K. Semenov, Rapid ballistic readout for flux qubits. Phys. Rev. B 73, 094504 (2006)CrossRef D.V. Averin, K. Rabenstein, V.K. Semenov, Rapid ballistic readout for flux qubits. Phys. Rev. B 73, 094504 (2006)CrossRef
347.
Zurück zum Zitat A. Herr, A. Fedorov, A. Shnirman, E. Il’ichev, G. Schön, Design of a ballistic fluxon qubit readout. Supercond. Sci. Technol. 20(11), S450–S454 (2007)CrossRef A. Herr, A. Fedorov, A. Shnirman, E. Il’ichev, G. Schön, Design of a ballistic fluxon qubit readout. Supercond. Sci. Technol. 20(11), S450–S454 (2007)CrossRef
348.
Zurück zum Zitat K.G. Fedorov, A.V. Shcherbakova, M.J. Wolf, D. Beckmann, A.V. Ustinov, Fluxon readout of a superconducting qubit. Phys. Rev. Lett. 112, 160502 (2014)CrossRef K.G. Fedorov, A.V. Shcherbakova, M.J. Wolf, D. Beckmann, A.V. Ustinov, Fluxon readout of a superconducting qubit. Phys. Rev. Lett. 112, 160502 (2014)CrossRef
349.
Zurück zum Zitat C. Howington, A. Opremcak, R. McDermott, A. Kirichenko, O.A. Mukhanov, B.L.T. Plourde, Interfacing superconducting qubits with cryogenic logic: readout. IEEE Trans. Appl. Supercond. 29(5), 1–5 (2019)CrossRef C. Howington, A. Opremcak, R. McDermott, A. Kirichenko, O.A. Mukhanov, B.L.T. Plourde, Interfacing superconducting qubits with cryogenic logic: readout. IEEE Trans. Appl. Supercond. 29(5), 1–5 (2019)CrossRef
350.
Zurück zum Zitat Google Quantum AI, Suppressing quantum errors by scaling a surface code logical qubit. Nature 614(7949), 676–681 (2023)CrossRef Google Quantum AI, Suppressing quantum errors by scaling a surface code logical qubit. Nature 614(7949), 676–681 (2023)CrossRef
351.
Zurück zum Zitat S. Krinner, N. Lacroix, A. Remm, A.D. Paolo, E. Genois, C. Leroux, C. Hellings, S. Lazar, F. Swiadek, J. Herrmann, G.J. Norris, C.K. Andersen, M. Müller, A. Blais, C. Eichler, A. Wallraff, Realizing repeated quantum error correction in a distance-three surface code. Nature 605(7911), 669–674 (2022)CrossRef S. Krinner, N. Lacroix, A. Remm, A.D. Paolo, E. Genois, C. Leroux, C. Hellings, S. Lazar, F. Swiadek, J. Herrmann, G.J. Norris, C.K. Andersen, M. Müller, A. Blais, C. Eichler, A. Wallraff, Realizing repeated quantum error correction in a distance-three surface code. Nature 605(7911), 669–674 (2022)CrossRef
352.
Zurück zum Zitat A.G. Fowler, M. Mariantoni, J.M. Martinis, A.N. Cleland, Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012)CrossRef A.G. Fowler, M. Mariantoni, J.M. Martinis, A.N. Cleland, Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012)CrossRef
353.
Zurück zum Zitat A. Holmes, M.R. Jokar, G. Pasandi, Y. Ding, M. Pedram, F.T. Chong, NISQ+: boosting quantum computing power by approximating quantum error correction, in Proceedings of the ACM/IEEE International Symposium on Computer Architecture (2020), pp. 556–569 A. Holmes, M.R. Jokar, G. Pasandi, Y. Ding, M. Pedram, F.T. Chong, NISQ+: boosting quantum computing power by approximating quantum error correction, in Proceedings of the ACM/IEEE International Symposium on Computer Architecture (2020), pp. 556–569
355.
Zurück zum Zitat Y. Ueno, M. Kondo, M. Tanaka, Y. Suzuki, Y. Tabuchi, QULATIS: a quantum error correction methodology toward lattice surgery, in Proceedings of the IEEE International Symposium on High-Performance Computer Architecture (2022), pp. 274–287 Y. Ueno, M. Kondo, M. Tanaka, Y. Suzuki, Y. Tabuchi, QULATIS: a quantum error correction methodology toward lattice surgery, in Proceedings of the IEEE International Symposium on High-Performance Computer Architecture (2022), pp. 274–287
Metadaten
Titel
SFQ Circuits for Quantum Computing
verfasst von
Gleb Krylov
Tahereh Jabbari
Eby G. Friedman
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-47475-0_10

Neuer Inhalt