Skip to main content

2024 | OriginalPaper | Buchkapitel

15. Design Guidelines for ERSFQ Bias Networks

verfasst von : Gleb Krylov, Tahereh Jabbari, Eby G. Friedman

Erschienen in: Single Flux Quantum Integrated Circuit Design

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

ERSFQ is an energy-efficient, inductive bias scheme for RSFQ circuits, where the power dissipation is drastically lowered by eliminating the bias resistors while the cell library remains unchanged. The ERSFQ bias scheme requires multiple circuit elements—current limiting Josephson junctions, bias inductors, and feeding Josephson transmission lines (FJTL). In this chapter, parameter guidelines and design techniques for ERSFQ circuits are presented. These guidelines enable more robust circuits resistant to severe variations in the supplied bias current. Trends are considered, and advantageous tradeoffs are discussed for the different components within a bias network. The guidelines provide a means to decrease the size of a FJTL and thereby reduce the physical area, power dissipation, and overall bias current, supporting further increases in circuit complexity. A distributed approach to an ERSFQ FJTL is also presented to simplify the placement process and minimize the effects of the parasitic inductance of the bias lines. This methodology and related circuit techniques are applicable to automating the synthesis of bias networks to enable large-scale ERSFQ circuits.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
22.
Zurück zum Zitat T. Jabbari, F. Shanehsazzadeh, H. Zandi, M. Banzet, J. Schubert, M. Fardmanesh, Effects of the design parameters on characteristics of the inductances and JJs in HTS RSFQ circuits. IEEE Trans. Appl. Supercond. 28(7), 1–4 (2018)CrossRef T. Jabbari, F. Shanehsazzadeh, H. Zandi, M. Banzet, J. Schubert, M. Fardmanesh, Effects of the design parameters on characteristics of the inductances and JJs in HTS RSFQ circuits. IEEE Trans. Appl. Supercond. 28(7), 1–4 (2018)CrossRef
25.
Zurück zum Zitat K.K. Likharev, V.K. Semenov, RSFQ logic/memory family: a new Josephson-junction technology for sub-terahertz-clock-frequency digital systems. IEEE Trans. Appl. Supercond. 1(1), 3–28 (1991)CrossRef K.K. Likharev, V.K. Semenov, RSFQ logic/memory family: a new Josephson-junction technology for sub-terahertz-clock-frequency digital systems. IEEE Trans. Appl. Supercond. 1(1), 3–28 (1991)CrossRef
37.
Zurück zum Zitat O.A. Mukhanov, Energy-efficient single flux quantum technology. IEEE Trans. Appl. Supercond. 21(3), 760–769 (2011)CrossRef O.A. Mukhanov, Energy-efficient single flux quantum technology. IEEE Trans. Appl. Supercond. 21(3), 760–769 (2011)CrossRef
41.
Zurück zum Zitat T. Jabbari, E.G. Friedman, Global interconnects in VLSI complexity single flux quantum systems, in Proceedings of the Workshop on System-Level Interconnect: Problems and Pathfinding Workshop (2020), pp. 1–7 T. Jabbari, E.G. Friedman, Global interconnects in VLSI complexity single flux quantum systems, in Proceedings of the Workshop on System-Level Interconnect: Problems and Pathfinding Workshop (2020), pp. 1–7
56.
Zurück zum Zitat T. Jabbari, M. Bocko, E.G. Friedman, All-JJ logic based on bistable JJs. IEEE Trans. Appl. Supercond. 33(5), 1–7 (2023) T. Jabbari, M. Bocko, E.G. Friedman, All-JJ logic based on bistable JJs. IEEE Trans. Appl. Supercond. 33(5), 1–7 (2023)
57.
Zurück zum Zitat T. Jabbari, E.G. Friedman, Transmission lines in VLSI complexity single flux quantum systems, in Proceedings of the PhotonIcs and Electromagnetics Research Symposium (2023), pp. 1749–1759 T. Jabbari, E.G. Friedman, Transmission lines in VLSI complexity single flux quantum systems, in Proceedings of the PhotonIcs and Electromagnetics Research Symposium (2023), pp. 1749–1759
58.
Zurück zum Zitat R. Bairamkulov, T. Jabbari, E.G. Friedman, QuCTS – single flux quantum clock tree synthesis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 41(10), 3346–3358 (2022)CrossRef R. Bairamkulov, T. Jabbari, E.G. Friedman, QuCTS – single flux quantum clock tree synthesis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 41(10), 3346–3358 (2022)CrossRef
59.
Zurück zum Zitat T. Jabbari, J. Kawa, E.G. Friedman, H-tree clock synthesis in RSFQ circuits, in Proceedings of the IEEE Baltic Electronics Conference (2020), pp. 1–5 T. Jabbari, J. Kawa, E.G. Friedman, H-tree clock synthesis in RSFQ circuits, in Proceedings of the IEEE Baltic Electronics Conference (2020), pp. 1–5
60.
Zurück zum Zitat T. Jabbari, G. Krylov, J Kawa, E.G. Friedman, Splitter trees in single flux quantum circuits. IEEE Trans. Appl. Supercond. 31(5), 1302606 (2021) T. Jabbari, G. Krylov, J Kawa, E.G. Friedman, Splitter trees in single flux quantum circuits. IEEE Trans. Appl. Supercond. 31(5), 1302606 (2021)
87.
Zurück zum Zitat T. Jabbari, E.G. Friedman, Surface inductance of superconductive striplines. IEEE Trans. Circuits Syst. II Express Briefs 69(6), 2952–2956 (2022) T. Jabbari, E.G. Friedman, Surface inductance of superconductive striplines. IEEE Trans. Circuits Syst. II Express Briefs 69(6), 2952–2956 (2022)
104.
Zurück zum Zitat G. Krylov, E.G. Friedman, Behavioral verilog-A model of superconductor-ferromagnetic transistor, in Proceedings of the IEEE International Symposium on Circuits and Systems (2018) G. Krylov, E.G. Friedman, Behavioral verilog-A model of superconductor-ferromagnetic transistor, in Proceedings of the IEEE International Symposium on Circuits and Systems (2018)
110.
Zurück zum Zitat G. Krylov, E.G. Friedman, Partitioning RSFQ circuits for current recycling. IEEE Trans. Appl. Supercond. 31(5), 1–6 (2021)CrossRef G. Krylov, E.G. Friedman, Partitioning RSFQ circuits for current recycling. IEEE Trans. Appl. Supercond. 31(5), 1–6 (2021)CrossRef
131.
Zurück zum Zitat G. Krylov, E.G. Friedman, Design methodology for distributed large-scale ERSFQ bias networks. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 28(11), 2438–2447 (2020) G. Krylov, E.G. Friedman, Design methodology for distributed large-scale ERSFQ bias networks. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 28(11), 2438–2447 (2020)
132.
Zurück zum Zitat G. Krylov, E.G. Friedman, Asynchronous dynamic single flux quantum majority gates. IEEE Trans. Appl. Supercond. 30(5), 1–7 (2020). Art no. 1300907 G. Krylov, E.G. Friedman, Asynchronous dynamic single flux quantum majority gates. IEEE Trans. Appl. Supercond. 30(5), 1–7 (2020). Art no. 1300907
137.
Zurück zum Zitat T. Jabbari, E.G. Friedman, Inductive and capacitive coupling noise in superconductive VLSI circuits. IEEE Trans. Appl. Supercond. 33(9), 3800707 (2023) T. Jabbari, E.G. Friedman, Inductive and capacitive coupling noise in superconductive VLSI circuits. IEEE Trans. Appl. Supercond. 33(9), 3800707 (2023)
145.
Zurück zum Zitat H. Kumar, T. Jabbari, G. Krylov, K. Basu, E.G. Friedman, R. Karri, Toward increasing the difficulty of reverse engineering of RSFQ circuits. IEEE Trans. Appl. Supercond. 30(3), 1–13 (2020)CrossRef H. Kumar, T. Jabbari, G. Krylov, K. Basu, E.G. Friedman, R. Karri, Toward increasing the difficulty of reverse engineering of RSFQ circuits. IEEE Trans. Appl. Supercond. 30(3), 1–13 (2020)CrossRef
147.
Zurück zum Zitat Y. Mustafa, T. Jabbari, S. Köse, Emerging attacks on logic locking in SFQ circuits and related countermeasures. IEEE Trans. Appl. Supercond. 32(3), 1–8 (2022)CrossRef Y. Mustafa, T. Jabbari, S. Köse, Emerging attacks on logic locking in SFQ circuits and related countermeasures. IEEE Trans. Appl. Supercond. 32(3), 1–8 (2022)CrossRef
149.
Zurück zum Zitat G. Krylov, E.G. Friedman, Bias distribution in ERSFQ VLSI circuits, in Proceedings of the IEEE International Symposium on Circuits and Systems (2020), pp. 1–5 G. Krylov, E.G. Friedman, Bias distribution in ERSFQ VLSI circuits, in Proceedings of the IEEE International Symposium on Circuits and Systems (2020), pp. 1–5
150.
Zurück zum Zitat G. Krylov, E.G. Friedman, Bias networks for high complexity energy efficient single flux quantum circuits, in Proceedings of the Government Microcircuit Applications & Critical Technology Conference (2020) G. Krylov, E.G. Friedman, Bias networks for high complexity energy efficient single flux quantum circuits, in Proceedings of the Government Microcircuit Applications & Critical Technology Conference (2020)
159.
Zurück zum Zitat G. Krylov, E.G. Friedman, Design for testability of SFQ circuits. IEEE Trans. Appl. Supercond. 27(8), 1–7 (2017)CrossRef G. Krylov, E.G. Friedman, Design for testability of SFQ circuits. IEEE Trans. Appl. Supercond. 27(8), 1–7 (2017)CrossRef
203.
Zurück zum Zitat A.F. Kirichenko, I.V. Vernik, M.Y. Kamkar, J. Walter, M. Miller, L.R. Albu, O.A. Mukhanov, ERSFQ 8-bit parallel arithmetic logic unit. IEEE Trans. Appl. Supercond. 29(5), 1–7 (2019) A.F. Kirichenko, I.V. Vernik, M.Y. Kamkar, J. Walter, M. Miller, L.R. Albu, O.A. Mukhanov, ERSFQ 8-bit parallel arithmetic logic unit. IEEE Trans. Appl. Supercond. 29(5), 1–7 (2019)
216.
Zurück zum Zitat G. Krylov, E.G. Friedman, Globally asynchronous, locally synchronous clocking and shared interconnect for large-scale SFQ systems. IEEE Trans. Appl. Supercond. 29(5), 1–5 (2019) G. Krylov, E.G. Friedman, Globally asynchronous, locally synchronous clocking and shared interconnect for large-scale SFQ systems. IEEE Trans. Appl. Supercond. 29(5), 1–5 (2019)
217.
Zurück zum Zitat G. Krylov, E.G. Friedman, Test point insertion for RSFQ circuits, in Proceedings of the IEEE International Symposium on Circuits and Systems (2017), pp. 2022–2025 G. Krylov, E.G. Friedman, Test point insertion for RSFQ circuits, in Proceedings of the IEEE International Symposium on Circuits and Systems (2017), pp. 2022–2025
220.
Zurück zum Zitat D.E. Kirichenko, S. Sarwana, A.F. Kirichenko, Zero static power dissipation biasing of RSFQ circuits. IEEE Trans. Appl. Supercond. 21(3), 776–779 (2011)CrossRef D.E. Kirichenko, S. Sarwana, A.F. Kirichenko, Zero static power dissipation biasing of RSFQ circuits. IEEE Trans. Appl. Supercond. 21(3), 776–779 (2011)CrossRef
225.
Zurück zum Zitat C. Shawawreh, D. Amparo, J. Ren, M. Miller, M.Y. Kamkar, A. Sahu, A. Inamdar, A.F. Kirichenko, O.A. Mukhanov, I.V. Vernik, Effects of adaptive DC biasing on operational margins in ERSFQ circuits. IEEE Trans. Appl. Supercond. 27(4), 1–6 (2017)CrossRef C. Shawawreh, D. Amparo, J. Ren, M. Miller, M.Y. Kamkar, A. Sahu, A. Inamdar, A.F. Kirichenko, O.A. Mukhanov, I.V. Vernik, Effects of adaptive DC biasing on operational margins in ERSFQ circuits. IEEE Trans. Appl. Supercond. 27(4), 1–6 (2017)CrossRef
226.
Zurück zum Zitat I.V. Vernik, A.F. Kirichenko, O.A. Mukhanov, T.A. Ohki, Energy-efficient and compact ERSFQ decoder for cryogenic RAM. IEEE Trans. Appl. Supercond. 27(4), 1–5 (2017)CrossRef I.V. Vernik, A.F. Kirichenko, O.A. Mukhanov, T.A. Ohki, Energy-efficient and compact ERSFQ decoder for cryogenic RAM. IEEE Trans. Appl. Supercond. 27(4), 1–5 (2017)CrossRef
227.
Zurück zum Zitat N.K. Katam, O. Mukhanov, M. Pedram, Simulation analysis and energy-saving techniques for ERSFQ circuits. IEEE Trans. Appl. Supercond. 29(5), 1–7 (2019)CrossRef N.K. Katam, O. Mukhanov, M. Pedram, Simulation analysis and energy-saving techniques for ERSFQ circuits. IEEE Trans. Appl. Supercond. 29(5), 1–7 (2019)CrossRef
228.
Zurück zum Zitat M.B. Ketchen, J. Timmerwilke, G.W. Gibson, M. Bhushan, ERSFQ power delivery: a self-consistent model/hardware case study. IEEE Trans. Appl. Supercond. 29(7), 1–11 (2019)CrossRef M.B. Ketchen, J. Timmerwilke, G.W. Gibson, M. Bhushan, ERSFQ power delivery: a self-consistent model/hardware case study. IEEE Trans. Appl. Supercond. 29(7), 1–11 (2019)CrossRef
229.
Zurück zum Zitat G. Li, J. Ren, Y. Wu, L. Ying, M. Niu, L. Chen, Z. Wang, Research on the bias network of energy-efficient single flux quantum circuits. IEEE Trans. Appl. Supercond. 29(5), 1–5 (2019) G. Li, J. Ren, Y. Wu, L. Ying, M. Niu, L. Chen, Z. Wang, Research on the bias network of energy-efficient single flux quantum circuits. IEEE Trans. Appl. Supercond. 29(5), 1–5 (2019)
242.
Zurück zum Zitat T. Jabbari, R. Bairamkulov, J. Kawa, E. Friedman, Interconnect benchmark circuits for single flux quantum integrated circuits. IEEE Trans. Appl. Supercond. (2023). Under review T. Jabbari, R. Bairamkulov, J. Kawa, E. Friedman, Interconnect benchmark circuits for single flux quantum integrated circuits. IEEE Trans. Appl. Supercond. (2023). Under review
389.
Zurück zum Zitat K. Gaj, Q.P. Herr, V. Adler, A. Krasniewski, E.G. Friedman, M.J. Feldman, Tools for the computer-aided design of multigigahertz superconducting digital circuits. IEEE Trans. Appl. Supercond. 9(1), 18–38 (1999)CrossRef K. Gaj, Q.P. Herr, V. Adler, A. Krasniewski, E.G. Friedman, M.J. Feldman, Tools for the computer-aided design of multigigahertz superconducting digital circuits. IEEE Trans. Appl. Supercond. 9(1), 18–38 (1999)CrossRef
390.
Zurück zum Zitat C.J. Fourie, Digital superconducting electronics design tools - status and roadmap. IEEE Trans. Appl. Supercond. 28(5), 1–12 (2018)CrossRef C.J. Fourie, Digital superconducting electronics design tools - status and roadmap. IEEE Trans. Appl. Supercond. 28(5), 1–12 (2018)CrossRef
443.
Zurück zum Zitat I.P. Vaisband, R. Jakushokas, M. Popovich, A.V. Mezhiba, S. Köse, E.G. Friedman, On-Chip Power Delivery and Management, 4th edn. (Springer, Berlin, 2016)CrossRef I.P. Vaisband, R. Jakushokas, M. Popovich, A.V. Mezhiba, S. Köse, E.G. Friedman, On-Chip Power Delivery and Management, 4th edn. (Springer, Berlin, 2016)CrossRef
491.
Zurück zum Zitat O. Mukhanov, A.F. Kirichenko, D.E. Kirichenko, Low power biasing networks for superconducting integrated circuits, U.S. Patent, No. 9,853,645, 26 Dec 2017 O. Mukhanov, A.F. Kirichenko, D.E. Kirichenko, Low power biasing networks for superconducting integrated circuits, U.S. Patent, No. 9,853,645, 26 Dec 2017
492.
Zurück zum Zitat V.K. Semenov, Y. Polyakov, Current recycling: new results. IEEE Trans. Appl. Supercond. 29(5), 1–4 (2019) V.K. Semenov, Y. Polyakov, Current recycling: new results. IEEE Trans. Appl. Supercond. 29(5), 1–4 (2019)
493.
Zurück zum Zitat J.H. Kang, S.B. Kaplan, Current recycling and SFQ signal transfer in large scale RSFQ circuits. IEEE Trans. Appl. Supercond. 13(2), 547–550 (2003)CrossRef J.H. Kang, S.B. Kaplan, Current recycling and SFQ signal transfer in large scale RSFQ circuits. IEEE Trans. Appl. Supercond. 13(2), 547–550 (2003)CrossRef
Metadaten
Titel
Design Guidelines for ERSFQ Bias Networks
verfasst von
Gleb Krylov
Tahereh Jabbari
Eby G. Friedman
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-47475-0_15

Neuer Inhalt