Skip to main content

2024 | OriginalPaper | Buchkapitel

16. Partitioning RSFQ Circuits for Current Recycling

verfasst von : Gleb Krylov, Tahereh Jabbari, Eby G. Friedman

Erschienen in: Single Flux Quantum Integrated Circuit Design

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

RSFQ circuits require a DC bias current to operate properly. The bias current in conventional RSFQ circuits is supplied to each gate, resulting in large current requirements in VLSI complexity SFQ systems, on the order of tens to hundreds of amperes. These high currents are difficult to supply and distribute. Large currents require significant metal and input pin resources. In addition, large currents can inductively couple to sensitive superconductive inductors, degrading circuit operation and producing errors. Current recycling is a well-known technique to reduce these bias currents. RSFQ circuits with similar bias current requirements can be serially biased and placed on separate ground planes. The inputs and outputs of these circuits are galvanically decoupled and require drivers and receivers between connections. In this chapter, a methodology for automated partitioning of complex RSFQ circuits into blocks with similar bias currents is described, where the number of connections among the blocks is minimized. These blocks are biased in series, reducing the total bias current by the number of partitions. The partitioning methodology is intended for use within an automated EDA flow to enable current recycling for arbitrary (nonuniform, irregular) VLSI complexity RSFQ circuits, drastically reducing the overall bias current and input requirements.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
37.
Zurück zum Zitat O.A. Mukhanov, Energy-efficient single flux quantum technology. IEEE Trans. Appl. Supercond. 21(3), 760–769 (2011)CrossRef O.A. Mukhanov, Energy-efficient single flux quantum technology. IEEE Trans. Appl. Supercond. 21(3), 760–769 (2011)CrossRef
39.
Zurück zum Zitat T. Jabbari, G. Krylov, S. Whiteley, E. Mlinar, J Kawa, E.G. Friedman, Interconnect routing for large scale RSFQ circuits. IEEE Trans. Appl. Supercond. 29(5), 1102805 (2019) T. Jabbari, G. Krylov, S. Whiteley, E. Mlinar, J Kawa, E.G. Friedman, Interconnect routing for large scale RSFQ circuits. IEEE Trans. Appl. Supercond. 29(5), 1102805 (2019)
41.
Zurück zum Zitat T. Jabbari, E.G. Friedman, Global interconnects in VLSI complexity single flux quantum systems, in Proceedings of the Workshop on System-Level Interconnect: Problems and Pathfinding Workshop (2020), pp. 1–7 T. Jabbari, E.G. Friedman, Global interconnects in VLSI complexity single flux quantum systems, in Proceedings of the Workshop on System-Level Interconnect: Problems and Pathfinding Workshop (2020), pp. 1–7
42.
Zurück zum Zitat T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Repeater insertion in SFQ interconnect. IEEE Trans. Appl. Supercond. 30(8), 5400508 (2020) T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Repeater insertion in SFQ interconnect. IEEE Trans. Appl. Supercond. 30(8), 5400508 (2020)
57.
Zurück zum Zitat T. Jabbari, E.G. Friedman, Transmission lines in VLSI complexity single flux quantum systems, in Proceedings of the PhotonIcs and Electromagnetics Research Symposium (2023), pp. 1749–1759 T. Jabbari, E.G. Friedman, Transmission lines in VLSI complexity single flux quantum systems, in Proceedings of the PhotonIcs and Electromagnetics Research Symposium (2023), pp. 1749–1759
58.
Zurück zum Zitat R. Bairamkulov, T. Jabbari, E.G. Friedman, QuCTS – single flux quantum clock tree synthesis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 41(10), 3346–3358 (2022)CrossRef R. Bairamkulov, T. Jabbari, E.G. Friedman, QuCTS – single flux quantum clock tree synthesis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 41(10), 3346–3358 (2022)CrossRef
59.
Zurück zum Zitat T. Jabbari, J. Kawa, E.G. Friedman, H-tree clock synthesis in RSFQ circuits, in Proceedings of the IEEE Baltic Electronics Conference (2020), pp. 1–5 T. Jabbari, J. Kawa, E.G. Friedman, H-tree clock synthesis in RSFQ circuits, in Proceedings of the IEEE Baltic Electronics Conference (2020), pp. 1–5
60.
Zurück zum Zitat T. Jabbari, G. Krylov, J Kawa, E.G. Friedman, Splitter trees in single flux quantum circuits. IEEE Trans. Appl. Supercond. 31(5), 1302606 (2021) T. Jabbari, G. Krylov, J Kawa, E.G. Friedman, Splitter trees in single flux quantum circuits. IEEE Trans. Appl. Supercond. 31(5), 1302606 (2021)
61.
Zurück zum Zitat T. Jabbari, E.G. Friedman, Flux mitigation in wide superconductive striplines. IEEE Trans. Appl. Supercond. 32(3), 1–6 (2022)CrossRef T. Jabbari, E.G. Friedman, Flux mitigation in wide superconductive striplines. IEEE Trans. Appl. Supercond. 32(3), 1–6 (2022)CrossRef
63.
Zurück zum Zitat T. Jabbari, E.G. Friedman, Stripline topology for flux mitigation. IEEE Trans. Appl. Supercond. 335, 1–4 (2023) T. Jabbari, E.G. Friedman, Stripline topology for flux mitigation. IEEE Trans. Appl. Supercond. 335, 1–4 (2023)
65.
Zurück zum Zitat T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Resonance effects in single flux quantum interconnect, in Proceedings of the Government Microcircuit Applications and Critical Technology Conference (2020), pp. 1–5 T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Resonance effects in single flux quantum interconnect, in Proceedings of the Government Microcircuit Applications and Critical Technology Conference (2020), pp. 1–5
87.
Zurück zum Zitat T. Jabbari, E.G. Friedman, Surface inductance of superconductive striplines. IEEE Trans. Circuits Syst. II Express Briefs 69(6), 2952–2956 (2022) T. Jabbari, E.G. Friedman, Surface inductance of superconductive striplines. IEEE Trans. Circuits Syst. II Express Briefs 69(6), 2952–2956 (2022)
91.
Zurück zum Zitat S.K. Tolpygo, Superconductor digital electronics: scalability and energy efficiency issues. Low Temp. Phys. 42(5), 361–379 (2016)CrossRef S.K. Tolpygo, Superconductor digital electronics: scalability and energy efficiency issues. Low Temp. Phys. 42(5), 361–379 (2016)CrossRef
110.
Zurück zum Zitat G. Krylov, E.G. Friedman, Partitioning RSFQ circuits for current recycling. IEEE Trans. Appl. Supercond. 31(5), 1–6 (2021)CrossRef G. Krylov, E.G. Friedman, Partitioning RSFQ circuits for current recycling. IEEE Trans. Appl. Supercond. 31(5), 1–6 (2021)CrossRef
131.
Zurück zum Zitat G. Krylov, E.G. Friedman, Design methodology for distributed large-scale ERSFQ bias networks. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 28(11), 2438–2447 (2020) G. Krylov, E.G. Friedman, Design methodology for distributed large-scale ERSFQ bias networks. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 28(11), 2438–2447 (2020)
132.
Zurück zum Zitat G. Krylov, E.G. Friedman, Asynchronous dynamic single flux quantum majority gates. IEEE Trans. Appl. Supercond. 30(5), 1–7 (2020). Art no. 1300907 G. Krylov, E.G. Friedman, Asynchronous dynamic single flux quantum majority gates. IEEE Trans. Appl. Supercond. 30(5), 1–7 (2020). Art no. 1300907
137.
Zurück zum Zitat T. Jabbari, E.G. Friedman, Inductive and capacitive coupling noise in superconductive VLSI circuits. IEEE Trans. Appl. Supercond. 33(9), 3800707 (2023) T. Jabbari, E.G. Friedman, Inductive and capacitive coupling noise in superconductive VLSI circuits. IEEE Trans. Appl. Supercond. 33(9), 3800707 (2023)
145.
Zurück zum Zitat H. Kumar, T. Jabbari, G. Krylov, K. Basu, E.G. Friedman, R. Karri, Toward increasing the difficulty of reverse engineering of RSFQ circuits. IEEE Trans. Appl. Supercond. 30(3), 1–13 (2020)CrossRef H. Kumar, T. Jabbari, G. Krylov, K. Basu, E.G. Friedman, R. Karri, Toward increasing the difficulty of reverse engineering of RSFQ circuits. IEEE Trans. Appl. Supercond. 30(3), 1–13 (2020)CrossRef
147.
Zurück zum Zitat Y. Mustafa, T. Jabbari, S. Köse, Emerging attacks on logic locking in SFQ circuits and related countermeasures. IEEE Trans. Appl. Supercond. 32(3), 1–8 (2022)CrossRef Y. Mustafa, T. Jabbari, S. Köse, Emerging attacks on logic locking in SFQ circuits and related countermeasures. IEEE Trans. Appl. Supercond. 32(3), 1–8 (2022)CrossRef
149.
Zurück zum Zitat G. Krylov, E.G. Friedman, Bias distribution in ERSFQ VLSI circuits, in Proceedings of the IEEE International Symposium on Circuits and Systems (2020), pp. 1–5 G. Krylov, E.G. Friedman, Bias distribution in ERSFQ VLSI circuits, in Proceedings of the IEEE International Symposium on Circuits and Systems (2020), pp. 1–5
150.
Zurück zum Zitat G. Krylov, E.G. Friedman, Bias networks for high complexity energy efficient single flux quantum circuits, in Proceedings of the Government Microcircuit Applications & Critical Technology Conference (2020) G. Krylov, E.G. Friedman, Bias networks for high complexity energy efficient single flux quantum circuits, in Proceedings of the Government Microcircuit Applications & Critical Technology Conference (2020)
159.
Zurück zum Zitat G. Krylov, E.G. Friedman, Design for testability of SFQ circuits. IEEE Trans. Appl. Supercond. 27(8), 1–7 (2017)CrossRef G. Krylov, E.G. Friedman, Design for testability of SFQ circuits. IEEE Trans. Appl. Supercond. 27(8), 1–7 (2017)CrossRef
181.
Zurück zum Zitat V.K. Semenov, Y.A. Polyakov, S.K. Tolpygo, Very large scale integration of Josephson-junction-based superconductor random access memories. IEEE Trans. Appl. Supercond. 29(5), 1–9 (2019) V.K. Semenov, Y.A. Polyakov, S.K. Tolpygo, Very large scale integration of Josephson-junction-based superconductor random access memories. IEEE Trans. Appl. Supercond. 29(5), 1–9 (2019)
216.
Zurück zum Zitat G. Krylov, E.G. Friedman, Globally asynchronous, locally synchronous clocking and shared interconnect for large-scale SFQ systems. IEEE Trans. Appl. Supercond. 29(5), 1–5 (2019) G. Krylov, E.G. Friedman, Globally asynchronous, locally synchronous clocking and shared interconnect for large-scale SFQ systems. IEEE Trans. Appl. Supercond. 29(5), 1–5 (2019)
227.
Zurück zum Zitat N.K. Katam, O. Mukhanov, M. Pedram, Simulation analysis and energy-saving techniques for ERSFQ circuits. IEEE Trans. Appl. Supercond. 29(5), 1–7 (2019)CrossRef N.K. Katam, O. Mukhanov, M. Pedram, Simulation analysis and energy-saving techniques for ERSFQ circuits. IEEE Trans. Appl. Supercond. 29(5), 1–7 (2019)CrossRef
242.
Zurück zum Zitat T. Jabbari, R. Bairamkulov, J. Kawa, E. Friedman, Interconnect benchmark circuits for single flux quantum integrated circuits. IEEE Trans. Appl. Supercond. (2023). Under review T. Jabbari, R. Bairamkulov, J. Kawa, E. Friedman, Interconnect benchmark circuits for single flux quantum integrated circuits. IEEE Trans. Appl. Supercond. (2023). Under review
406.
Zurück zum Zitat A.B. Kahng, J. Lienig, I.L. Markov, J. Hu, VLSI Physical Design: From Graph Partitioning to Timing Closure (Springer Netherlands, Dordrecht, 2011)CrossRef A.B. Kahng, J. Lienig, I.L. Markov, J. Hu, VLSI Physical Design: From Graph Partitioning to Timing Closure (Springer Netherlands, Dordrecht, 2011)CrossRef
463.
Zurück zum Zitat C.M. Fiduccia, R.M. Mattheyses, A linear-time heuristic for improving network partitions, in Proceedings of the ACM/IEEE Design Automation Conference (1982), pp. 175–181 C.M. Fiduccia, R.M. Mattheyses, A linear-time heuristic for improving network partitions, in Proceedings of the ACM/IEEE Design Automation Conference (1982), pp. 175–181
492.
Zurück zum Zitat V.K. Semenov, Y. Polyakov, Current recycling: new results. IEEE Trans. Appl. Supercond. 29(5), 1–4 (2019) V.K. Semenov, Y. Polyakov, Current recycling: new results. IEEE Trans. Appl. Supercond. 29(5), 1–4 (2019)
493.
Zurück zum Zitat J.H. Kang, S.B. Kaplan, Current recycling and SFQ signal transfer in large scale RSFQ circuits. IEEE Trans. Appl. Supercond. 13(2), 547–550 (2003)CrossRef J.H. Kang, S.B. Kaplan, Current recycling and SFQ signal transfer in large scale RSFQ circuits. IEEE Trans. Appl. Supercond. 13(2), 547–550 (2003)CrossRef
494.
Zurück zum Zitat M.W. Johnson, Q.P. Herr, D.J. Durand, L.A. Abelson, Differential SFQ transmission using either inductive or capacitive coupling. IEEE Trans. Appl. Supercond. 13(2), 507–510 (2003)CrossRef M.W. Johnson, Q.P. Herr, D.J. Durand, L.A. Abelson, Differential SFQ transmission using either inductive or capacitive coupling. IEEE Trans. Appl. Supercond. 13(2), 507–510 (2003)CrossRef
495.
Zurück zum Zitat K. Sano, T. Shimoda, Y. Abe, Y. Yamanashi, N. Yoshikawa, N. Zen, M. Ohkubo, Reduction of the supply current of single-flux-quantum time-to-digital converters by current recycling techniques. IEEE Trans. Appl. Supercond. 27(4), 1–5 (2017)CrossRef K. Sano, T. Shimoda, Y. Abe, Y. Yamanashi, N. Yoshikawa, N. Zen, M. Ohkubo, Reduction of the supply current of single-flux-quantum time-to-digital converters by current recycling techniques. IEEE Trans. Appl. Supercond. 27(4), 1–5 (2017)CrossRef
496.
Zurück zum Zitat V.K. Semenov, M.A. Voronova, DC voltage multipliers: a novel application of synchronization in Josephson junction arrays. IEEE Trans. Magn. 25(2), 1432–1435 (1989)CrossRef V.K. Semenov, M.A. Voronova, DC voltage multipliers: a novel application of synchronization in Josephson junction arrays. IEEE Trans. Magn. 25(2), 1432–1435 (1989)CrossRef
497.
Zurück zum Zitat T.V. Filippov, A. Sahu, S. Sarwana, D. Gupta, V.K. Semenov, Serially biased components for digital-RF receiver. IEEE Trans. Appl. Supercond. 19(3), 580–584 (2009)CrossRef T.V. Filippov, A. Sahu, S. Sarwana, D. Gupta, V.K. Semenov, Serially biased components for digital-RF receiver. IEEE Trans. Appl. Supercond. 19(3), 580–584 (2009)CrossRef
498.
Zurück zum Zitat G. Krylov, E.G. Friedman, Partitioning of RSFQ circuits for current recycling, in Proceedings of the IEEE Applied Superconductivity Conference (2020) G. Krylov, E.G. Friedman, Partitioning of RSFQ circuits for current recycling, in Proceedings of the IEEE Applied Superconductivity Conference (2020)
499.
Zurück zum Zitat N.K. Katam, B. Zhang, M. Pedram, Ground plane partitioning for current recycling of superconducting circuits, in Proceedings of the ACM/IEEE Design, Automation & Test in Europe Conference (2020), pp. 478–483 N.K. Katam, B. Zhang, M. Pedram, Ground plane partitioning for current recycling of superconducting circuits, in Proceedings of the ACM/IEEE Design, Automation & Test in Europe Conference (2020), pp. 478–483
500.
Zurück zum Zitat D.A. Papa, I.L. Markov, Hypergraph partitioning and clustering, in Handbook of Approximation Algorithms and Metaheuristics (Chapman & Hall/CRC, Boca Raton, 2007) D.A. Papa, I.L. Markov, Hypergraph partitioning and clustering, in Handbook of Approximation Algorithms and Metaheuristics (Chapman & Hall/CRC, Boca Raton, 2007)
501.
Zurück zum Zitat T. Manikas, G.R. Kane, Partitioning effects on estimated wire length for mixed macro and standard cell placement, in Proceedings of the ACM/IEEE International Workshop on Logic and Synthesis (2002) T. Manikas, G.R. Kane, Partitioning effects on estimated wire length for mixed macro and standard cell placement, in Proceedings of the ACM/IEEE International Workshop on Logic and Synthesis (2002)
502.
Zurück zum Zitat C.J. Alpert, A.E. Caldwell, A.B. Kahng, I.L. Markov, Hypergraph partitioning with fixed vertices. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 19(2), 267–272 (2000)CrossRef C.J. Alpert, A.E. Caldwell, A.B. Kahng, I.L. Markov, Hypergraph partitioning with fixed vertices. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 19(2), 267–272 (2000)CrossRef
503.
Zurück zum Zitat C.J. Alpert, T. Chan, D. Huang, I.L. Markov, K. Yan, Quadratic placement revisited, in Proceedings of the ACM/IEEE Design Automation Conference (1997), pp. 752–757 C.J. Alpert, T. Chan, D. Huang, I.L. Markov, K. Yan, Quadratic placement revisited, in Proceedings of the ACM/IEEE Design Automation Conference (1997), pp. 752–757
504.
Zurück zum Zitat R. Tsay, E.S. Kuh, C. Hsu, PROUD: a sea-of-gates placement algorithm. IEEE Des. Test Comput. 5(6), 44–56 (1988).CrossRef R. Tsay, E.S. Kuh, C. Hsu, PROUD: a sea-of-gates placement algorithm. IEEE Des. Test Comput. 5(6), 44–56 (1988).CrossRef
505.
Zurück zum Zitat B.W. Kernighan, S. Lin, An efficient heuristic procedure for partitioning graphs. Bell Syst. Tech. J. 49(2), 291–307 (1970)CrossRef B.W. Kernighan, S. Lin, An efficient heuristic procedure for partitioning graphs. Bell Syst. Tech. J. 49(2), 291–307 (1970)CrossRef
506.
Zurück zum Zitat F. Brglez, D. Bryan, K. Kozminski, Combinational profiles of sequential benchmark circuits. Proc. IEEE Int. Sympos. Circuits Syst. 3, 1929–1934 (1989)CrossRef F. Brglez, D. Bryan, K. Kozminski, Combinational profiles of sequential benchmark circuits. Proc. IEEE Int. Sympos. Circuits Syst. 3, 1929–1934 (1989)CrossRef
507.
Zurück zum Zitat F.M. Johannes, Partitioning of VLSI circuits and systems, in Proceedings of the ACM/IEEE Design Automation Conference (1996), pp. 83–87 F.M. Johannes, Partitioning of VLSI circuits and systems, in Proceedings of the ACM/IEEE Design Automation Conference (1996), pp. 83–87
Metadaten
Titel
Partitioning RSFQ Circuits for Current Recycling
verfasst von
Gleb Krylov
Tahereh Jabbari
Eby G. Friedman
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-47475-0_16

Neuer Inhalt