Skip to main content

2024 | OriginalPaper | Buchkapitel

28. Flux Mitigation in Wide Superconductive Striplines

verfasst von : Gleb Krylov, Tahereh Jabbari, Eby G. Friedman

Erschienen in: Single Flux Quantum Integrated Circuit Design

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The increasing complexity of modern superconductive circuits and single flux quantum (SFQ) circuits in particular have made the issue of flux trapping of growing importance. The use of wide superconductive striplines for signal routing has exacerbated this issue. Trapping residual magnetic fields in these striplines degrades performance while reducing margins, damaging the operability of superconductive circuits. In this chapter, an area-efficient topology for striplines is introduced to manage flux trapping in large-scale SFQ circuits. This topology is composed of narrow parallel lines in series with small resistors. The topology decreases the length of the striplines by exploiting the mutual inductance between the narrow parallel lines. The topology requires significantly less area while preventing flux trapping within wide superconductive striplines. The narrow parallel line topology also reduces coupling capacitance between striplines. The approach is compatible with automated routing of large-scale SFQ integrated circuits.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
39.
Zurück zum Zitat T. Jabbari, G. Krylov, S. Whiteley, E. Mlinar, J Kawa, E.G. Friedman, Interconnect routing for large scale RSFQ circuits. IEEE Trans. Appl. Supercond. 29(5), 1102805 (2019) T. Jabbari, G. Krylov, S. Whiteley, E. Mlinar, J Kawa, E.G. Friedman, Interconnect routing for large scale RSFQ circuits. IEEE Trans. Appl. Supercond. 29(5), 1102805 (2019)
42.
Zurück zum Zitat T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Repeater insertion in SFQ interconnect. IEEE Trans. Appl. Supercond. 30(8), 5400508 (2020) T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Repeater insertion in SFQ interconnect. IEEE Trans. Appl. Supercond. 30(8), 5400508 (2020)
57.
Zurück zum Zitat T. Jabbari, E.G. Friedman, Transmission lines in VLSI complexity single flux quantum systems, in Proceedings of the PhotonIcs and Electromagnetics Research Symposium (2023), pp. 1749–1759 T. Jabbari, E.G. Friedman, Transmission lines in VLSI complexity single flux quantum systems, in Proceedings of the PhotonIcs and Electromagnetics Research Symposium (2023), pp. 1749–1759
61.
Zurück zum Zitat T. Jabbari, E.G. Friedman, Flux mitigation in wide superconductive striplines. IEEE Trans. Appl. Supercond. 32(3), 1–6 (2022)CrossRef T. Jabbari, E.G. Friedman, Flux mitigation in wide superconductive striplines. IEEE Trans. Appl. Supercond. 32(3), 1–6 (2022)CrossRef
62.
Zurück zum Zitat A. Mitrovic, E.G. Friedman, Thermal modeling of rapid single flux quantum circuit structures. IEEE Trans. Electron. Devices 69(5), 2718–2724 (2022)CrossRef A. Mitrovic, E.G. Friedman, Thermal modeling of rapid single flux quantum circuit structures. IEEE Trans. Electron. Devices 69(5), 2718–2724 (2022)CrossRef
63.
Zurück zum Zitat T. Jabbari, E.G. Friedman, Stripline topology for flux mitigation. IEEE Trans. Appl. Supercond. 335, 1–4 (2023) T. Jabbari, E.G. Friedman, Stripline topology for flux mitigation. IEEE Trans. Appl. Supercond. 335, 1–4 (2023)
65.
Zurück zum Zitat T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Resonance effects in single flux quantum interconnect, in Proceedings of the Government Microcircuit Applications and Critical Technology Conference (2020), pp. 1–5 T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Resonance effects in single flux quantum interconnect, in Proceedings of the Government Microcircuit Applications and Critical Technology Conference (2020), pp. 1–5
87.
Zurück zum Zitat T. Jabbari, E.G. Friedman, Surface inductance of superconductive striplines. IEEE Trans. Circuits Syst. II Express Briefs 69(6), 2952–2956 (2022) T. Jabbari, E.G. Friedman, Surface inductance of superconductive striplines. IEEE Trans. Circuits Syst. II Express Briefs 69(6), 2952–2956 (2022)
111.
Zurück zum Zitat S.K. Tolpygo, V. Bolkhovsky, T.J. Weir, A. Wynn, D.E. Oates, L.M. Johnson, M.A. Gouker, Advanced fabrication processes for superconducting very large-scale integrated circuits. IEEE Trans. Appl. Supercond. 26(3), 1–10 (2016)CrossRef S.K. Tolpygo, V. Bolkhovsky, T.J. Weir, A. Wynn, D.E. Oates, L.M. Johnson, M.A. Gouker, Advanced fabrication processes for superconducting very large-scale integrated circuits. IEEE Trans. Appl. Supercond. 26(3), 1–10 (2016)CrossRef
137.
Zurück zum Zitat T. Jabbari, E.G. Friedman, Inductive and capacitive coupling noise in superconductive VLSI circuits. IEEE Trans. Appl. Supercond. 33(9), 3800707 (2023) T. Jabbari, E.G. Friedman, Inductive and capacitive coupling noise in superconductive VLSI circuits. IEEE Trans. Appl. Supercond. 33(9), 3800707 (2023)
165.
Zurück zum Zitat T. Van Duzer, C.W. Turner, Principles of Superconductive Devices and Circuits, 2nd edn. (Prentice Hall, Hoboken, 1999) T. Van Duzer, C.W. Turner, Principles of Superconductive Devices and Circuits, 2nd edn. (Prentice Hall, Hoboken, 1999)
224.
Zurück zum Zitat S.S. Meher, C. Kanungo, A. Shukla, A. Inamdar, Parametric approach for routing power nets and passive transmission lines as part of digital cells. IEEE Trans. Appl. Supercond. 29(5), 1–7 (2019)CrossRef S.S. Meher, C. Kanungo, A. Shukla, A. Inamdar, Parametric approach for routing power nets and passive transmission lines as part of digital cells. IEEE Trans. Appl. Supercond. 29(5), 1–7 (2019)CrossRef
238.
Zurück zum Zitat S.K. Tolpygo, V.K. Semenov, Increasing integration scale of superconductor electronics beyond one million Josephson junctions. J. Phys. Conf. Ser. 1559(1), 012002 (2020) S.K. Tolpygo, V.K. Semenov, Increasing integration scale of superconductor electronics beyond one million Josephson junctions. J. Phys. Conf. Ser. 1559(1), 012002 (2020)
249.
Zurück zum Zitat S.K. Tolpygo, V. Bolkhovsky, T.J. Weir, C.J. Galbraith, L.M. Johnson, M.A. Gouker, V.K. Semenov, Inductance of circuit structures for MIT LL superconductor electronics fabrication process with 8 niobium layers. IEEE Trans. Appl. Supercond. 25(3), 1–5 (2015) S.K. Tolpygo, V. Bolkhovsky, T.J. Weir, C.J. Galbraith, L.M. Johnson, M.A. Gouker, V.K. Semenov, Inductance of circuit structures for MIT LL superconductor electronics fabrication process with 8 niobium layers. IEEE Trans. Appl. Supercond. 25(3), 1–5 (2015)
271.
Zurück zum Zitat V.K. Semenov, M.M. Khapaev, How moats protect superconductor films from flux trapping. IEEE Trans. Appl. Supercond. 26(3), 1–10 (2016)CrossRef V.K. Semenov, M.M. Khapaev, How moats protect superconductor films from flux trapping. IEEE Trans. Appl. Supercond. 26(3), 1–10 (2016)CrossRef
371.
Zurück zum Zitat L.C. Müller, H.R. Gerber, C.J. Fourie, Review and comparison of RSFQ asynchronous methodologies. J. Phys. Conf. Ser. 97, 012109 (2007)CrossRef L.C. Müller, H.R. Gerber, C.J. Fourie, Review and comparison of RSFQ asynchronous methodologies. J. Phys. Conf. Ser. 97, 012109 (2007)CrossRef
529.
Zurück zum Zitat T. Jabbari, VLSI Complexity Single Flux Quantum Systems, Ph.D. Dissertation, University of Rochester, Rochester, New York, 2023 T. Jabbari, VLSI Complexity Single Flux Quantum Systems, Ph.D. Dissertation, University of Rochester, Rochester, New York, 2023
549.
Zurück zum Zitat S.K. Tolpygo, E.B. Golden, T.J. Weir, V. Bolkhovsky, Inductance of superconductor integrated circuit features with sizes down to 120 nm. Supercond. Sci. Technol. 34(8), 1–24 (2021)CrossRef S.K. Tolpygo, E.B. Golden, T.J. Weir, V. Bolkhovsky, Inductance of superconductor integrated circuit features with sizes down to 120 nm. Supercond. Sci. Technol. 34(8), 1–24 (2021)CrossRef
562.
Zurück zum Zitat S. Narayana, Y.A. Polyakov, V.K. Semenov, Evaluation of flux trapping in superconducting circuits. IEEE Trans. Appl. Supercond. 19(3), 640–643 (2009)CrossRef S. Narayana, Y.A. Polyakov, V.K. Semenov, Evaluation of flux trapping in superconducting circuits. IEEE Trans. Appl. Supercond. 19(3), 640–643 (2009)CrossRef
604.
Zurück zum Zitat C.J. Fourie, K. Jackman, Experimental verification of moat design and flux trapping analysis. IEEE Trans. Appl. Supercond. 31(5), 13005073 (2021) C.J. Fourie, K. Jackman, Experimental verification of moat design and flux trapping analysis. IEEE Trans. Appl. Supercond. 31(5), 13005073 (2021)
605.
Zurück zum Zitat K. Jackman, C.J. Fourie, Flux trapping experiments to verify simulation models. Supercond. Sci. Technol. 33(10), 105001 (2020) K. Jackman, C.J. Fourie, Flux trapping experiments to verify simulation models. Supercond. Sci. Technol. 33(10), 105001 (2020)
606.
Zurück zum Zitat M.A. Washington, I.A. Fulton, Observation of flux trapping threshold in narrow superconducting thin-films. Appl. Phys. Lett. 40(9), 848–850 (1982)CrossRef M.A. Washington, I.A. Fulton, Observation of flux trapping threshold in narrow superconducting thin-films. Appl. Phys. Lett. 40(9), 848–850 (1982)CrossRef
607.
Zurück zum Zitat K.H. Kuit, J.R. Kirtley, W. van der Veur, C.G. Molenaar, F.J.G. Roesthuis, A.G.P. Troeman, J.R. Clem, H. Hilgenkamp, H. Rogalla, J. Flokstra, Vortex trapping and expulsion in thin-film YBa\({ }_2\)Cu\({ }_3\)O\({ }_{7\delta }\) strips. Phys. Rev. B 77(134504), 1–8 (2008) K.H. Kuit, J.R. Kirtley, W. van der Veur, C.G. Molenaar, F.J.G. Roesthuis, A.G.P. Troeman, J.R. Clem, H. Hilgenkamp, H. Rogalla, J. Flokstra, Vortex trapping and expulsion in thin-film YBa\({ }_2\)Cu\({ }_3\)O\({ }_{7\delta }\) strips. Phys. Rev. B 77(134504), 1–8 (2008)
Metadaten
Titel
Flux Mitigation in Wide Superconductive Striplines
verfasst von
Gleb Krylov
Tahereh Jabbari
Eby G. Friedman
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-47475-0_28

Neuer Inhalt