Skip to main content

2024 | OriginalPaper | Buchkapitel

29. Stripline Topology for Flux Mitigation

verfasst von : Gleb Krylov, Tahereh Jabbari, Eby G. Friedman

Erschienen in: Single Flux Quantum Integrated Circuit Design

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The increasing complexity of modern single flux quantum (SFQ) circuits has increased the importance of flux trapping and trapped magnetic fields within SFQ systems. This trapped flux reduces margins while damaging the operability of superconductive circuits. In this chapter, an area-efficient stripline topology is introduced to prevent flux from being trapped within striplines. The topology is composed of coupled narrow lines rather than wide striplines. The topology uses a fingered narrow line configuration. The fingered narrow line topology enhances the scalability of SFQ systems while not requiring additional area. The topology decreases the length of the striplines by exploiting the mutual inductance between narrow parallel lines. The topology requires less area while preventing flux from being trapped within wide superconductive striplines. Due to the stripline configuration, residual current is eliminated in VLSI complexity SFQ circuits. The fingered narrow line topology also reduces coupling capacitance between striplines. The topology is compatible with automated routing of large-scale SFQ integrated circuits.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
7.
Zurück zum Zitat K.K. Likharev, Superconductor digital electronics, Physica C 482, 6–18 (2012)CrossRef K.K. Likharev, Superconductor digital electronics, Physica C 482, 6–18 (2012)CrossRef
39.
Zurück zum Zitat T. Jabbari, G. Krylov, S. Whiteley, E. Mlinar, J Kawa, E.G. Friedman, Interconnect routing for large scale RSFQ circuits. IEEE Trans. Appl. Supercond. 29(5), 1102805 (2019) T. Jabbari, G. Krylov, S. Whiteley, E. Mlinar, J Kawa, E.G. Friedman, Interconnect routing for large scale RSFQ circuits. IEEE Trans. Appl. Supercond. 29(5), 1102805 (2019)
41.
Zurück zum Zitat T. Jabbari, E.G. Friedman, Global interconnects in VLSI complexity single flux quantum systems, in Proceedings of the Workshop on System-Level Interconnect: Problems and Pathfinding Workshop (2020), pp. 1–7 T. Jabbari, E.G. Friedman, Global interconnects in VLSI complexity single flux quantum systems, in Proceedings of the Workshop on System-Level Interconnect: Problems and Pathfinding Workshop (2020), pp. 1–7
42.
Zurück zum Zitat T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Repeater insertion in SFQ interconnect. IEEE Trans. Appl. Supercond. 30(8), 5400508 (2020) T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Repeater insertion in SFQ interconnect. IEEE Trans. Appl. Supercond. 30(8), 5400508 (2020)
57.
Zurück zum Zitat T. Jabbari, E.G. Friedman, Transmission lines in VLSI complexity single flux quantum systems, in Proceedings of the PhotonIcs and Electromagnetics Research Symposium (2023), pp. 1749–1759 T. Jabbari, E.G. Friedman, Transmission lines in VLSI complexity single flux quantum systems, in Proceedings of the PhotonIcs and Electromagnetics Research Symposium (2023), pp. 1749–1759
61.
Zurück zum Zitat T. Jabbari, E.G. Friedman, Flux mitigation in wide superconductive striplines. IEEE Trans. Appl. Supercond. 32(3), 1–6 (2022)CrossRef T. Jabbari, E.G. Friedman, Flux mitigation in wide superconductive striplines. IEEE Trans. Appl. Supercond. 32(3), 1–6 (2022)CrossRef
63.
Zurück zum Zitat T. Jabbari, E.G. Friedman, Stripline topology for flux mitigation. IEEE Trans. Appl. Supercond. 335, 1–4 (2023) T. Jabbari, E.G. Friedman, Stripline topology for flux mitigation. IEEE Trans. Appl. Supercond. 335, 1–4 (2023)
87.
Zurück zum Zitat T. Jabbari, E.G. Friedman, Surface inductance of superconductive striplines. IEEE Trans. Circuits Syst. II Express Briefs 69(6), 2952–2956 (2022) T. Jabbari, E.G. Friedman, Surface inductance of superconductive striplines. IEEE Trans. Circuits Syst. II Express Briefs 69(6), 2952–2956 (2022)
111.
Zurück zum Zitat S.K. Tolpygo, V. Bolkhovsky, T.J. Weir, A. Wynn, D.E. Oates, L.M. Johnson, M.A. Gouker, Advanced fabrication processes for superconducting very large-scale integrated circuits. IEEE Trans. Appl. Supercond. 26(3), 1–10 (2016)CrossRef S.K. Tolpygo, V. Bolkhovsky, T.J. Weir, A. Wynn, D.E. Oates, L.M. Johnson, M.A. Gouker, Advanced fabrication processes for superconducting very large-scale integrated circuits. IEEE Trans. Appl. Supercond. 26(3), 1–10 (2016)CrossRef
137.
Zurück zum Zitat T. Jabbari, E.G. Friedman, Inductive and capacitive coupling noise in superconductive VLSI circuits. IEEE Trans. Appl. Supercond. 33(9), 3800707 (2023) T. Jabbari, E.G. Friedman, Inductive and capacitive coupling noise in superconductive VLSI circuits. IEEE Trans. Appl. Supercond. 33(9), 3800707 (2023)
224.
Zurück zum Zitat S.S. Meher, C. Kanungo, A. Shukla, A. Inamdar, Parametric approach for routing power nets and passive transmission lines as part of digital cells. IEEE Trans. Appl. Supercond. 29(5), 1–7 (2019)CrossRef S.S. Meher, C. Kanungo, A. Shukla, A. Inamdar, Parametric approach for routing power nets and passive transmission lines as part of digital cells. IEEE Trans. Appl. Supercond. 29(5), 1–7 (2019)CrossRef
238.
Zurück zum Zitat S.K. Tolpygo, V.K. Semenov, Increasing integration scale of superconductor electronics beyond one million Josephson junctions. J. Phys. Conf. Ser. 1559(1), 012002 (2020) S.K. Tolpygo, V.K. Semenov, Increasing integration scale of superconductor electronics beyond one million Josephson junctions. J. Phys. Conf. Ser. 1559(1), 012002 (2020)
242.
Zurück zum Zitat T. Jabbari, R. Bairamkulov, J. Kawa, E. Friedman, Interconnect benchmark circuits for single flux quantum integrated circuits. IEEE Trans. Appl. Supercond. (2023). Under review T. Jabbari, R. Bairamkulov, J. Kawa, E. Friedman, Interconnect benchmark circuits for single flux quantum integrated circuits. IEEE Trans. Appl. Supercond. (2023). Under review
271.
Zurück zum Zitat V.K. Semenov, M.M. Khapaev, How moats protect superconductor films from flux trapping. IEEE Trans. Appl. Supercond. 26(3), 1–10 (2016)CrossRef V.K. Semenov, M.M. Khapaev, How moats protect superconductor films from flux trapping. IEEE Trans. Appl. Supercond. 26(3), 1–10 (2016)CrossRef
601.
Zurück zum Zitat B. Chonigman, A. Shukla, M. Habib, V. Gupta, D. Kirichenko A. Talalaevskii, A. Sahu, A. Inamdar, D. Gupta, Optimization of passive transmission lines for single flux quantum circuits. IEEE Trans. Appl. Supercond. 31(5), 1–6 (2021)CrossRef B. Chonigman, A. Shukla, M. Habib, V. Gupta, D. Kirichenko A. Talalaevskii, A. Sahu, A. Inamdar, D. Gupta, Optimization of passive transmission lines for single flux quantum circuits. IEEE Trans. Appl. Supercond. 31(5), 1–6 (2021)CrossRef
604.
Zurück zum Zitat C.J. Fourie, K. Jackman, Experimental verification of moat design and flux trapping analysis. IEEE Trans. Appl. Supercond. 31(5), 13005073 (2021) C.J. Fourie, K. Jackman, Experimental verification of moat design and flux trapping analysis. IEEE Trans. Appl. Supercond. 31(5), 13005073 (2021)
606.
Zurück zum Zitat M.A. Washington, I.A. Fulton, Observation of flux trapping threshold in narrow superconducting thin-films. Appl. Phys. Lett. 40(9), 848–850 (1982)CrossRef M.A. Washington, I.A. Fulton, Observation of flux trapping threshold in narrow superconducting thin-films. Appl. Phys. Lett. 40(9), 848–850 (1982)CrossRef
608.
Zurück zum Zitat G. Krylov, J. Kawa, E.G. Friedman, Design automation of superconductive digital circuits a review. IEEE Nanotechnol. Magn. 15(6), 54–67 (2021)CrossRef G. Krylov, J. Kawa, E.G. Friedman, Design automation of superconductive digital circuits a review. IEEE Nanotechnol. Magn. 15(6), 54–67 (2021)CrossRef
Metadaten
Titel
Stripline Topology for Flux Mitigation
verfasst von
Gleb Krylov
Tahereh Jabbari
Eby G. Friedman
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-47475-0_29

Neuer Inhalt