Skip to main content

2024 | OriginalPaper | Buchkapitel

12. GALS Clocking and Shared Interconnect for Large-Scale SFQ Systems

verfasst von : Gleb Krylov, Tahereh Jabbari, Eby G. Friedman

Erschienen in: Single Flux Quantum Integrated Circuit Design

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A globally asynchronous, locally synchronous clocking scheme for large-scale single-flux quantum systems is described in this chapter. In this scheme, the width of each data bus is extended to carry the corresponding clock signal. This signal activates the distribution of the clock signals within the receiving block. Based on this approach for intra-chip interconnect within SFQ systems, a configurable shared bus is also presented. The data are attached to a tag, and a resulting data packet is sent to the shared bus. This packet is received by each block but only processed if the tag matches the block identifier. By avoiding expensive comparators and multiplexers, the overhead of the global bus connection is reduced. These approaches exploit the pulse-based nature and ambiguity of clock and data in SFQ technology—the data packet propagating through the interconnect carries a local clock signal.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
25.
Zurück zum Zitat K.K. Likharev, V.K. Semenov, RSFQ logic/memory family: a new Josephson-junction technology for sub-terahertz-clock-frequency digital systems. IEEE Trans. Appl. Supercond. 1(1), 3–28 (1991)CrossRef K.K. Likharev, V.K. Semenov, RSFQ logic/memory family: a new Josephson-junction technology for sub-terahertz-clock-frequency digital systems. IEEE Trans. Appl. Supercond. 1(1), 3–28 (1991)CrossRef
39.
Zurück zum Zitat T. Jabbari, G. Krylov, S. Whiteley, E. Mlinar, J Kawa, E.G. Friedman, Interconnect routing for large scale RSFQ circuits. IEEE Trans. Appl. Supercond. 29(5), 1102805 (2019) T. Jabbari, G. Krylov, S. Whiteley, E. Mlinar, J Kawa, E.G. Friedman, Interconnect routing for large scale RSFQ circuits. IEEE Trans. Appl. Supercond. 29(5), 1102805 (2019)
40.
Zurück zum Zitat T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Global signaling for large scale RSFQ circuits, in Proceedings of the Government Microcircuit Applications and Critical Technology Conference (2019), pp. 1–6 T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Global signaling for large scale RSFQ circuits, in Proceedings of the Government Microcircuit Applications and Critical Technology Conference (2019), pp. 1–6
41.
Zurück zum Zitat T. Jabbari, E.G. Friedman, Global interconnects in VLSI complexity single flux quantum systems, in Proceedings of the Workshop on System-Level Interconnect: Problems and Pathfinding Workshop (2020), pp. 1–7 T. Jabbari, E.G. Friedman, Global interconnects in VLSI complexity single flux quantum systems, in Proceedings of the Workshop on System-Level Interconnect: Problems and Pathfinding Workshop (2020), pp. 1–7
42.
Zurück zum Zitat T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Repeater insertion in SFQ interconnect. IEEE Trans. Appl. Supercond. 30(8), 5400508 (2020) T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Repeater insertion in SFQ interconnect. IEEE Trans. Appl. Supercond. 30(8), 5400508 (2020)
43.
Zurück zum Zitat W. Chen, A.V. Rylyakov, V. Patel, J.E. Lukens, K.K. Likharev, Rapid single flux quantum T-flip flop operating up to 770 GHz. IEEE Trans. Appl. Supercond. 9(2), 3212–3215 (1999)CrossRef W. Chen, A.V. Rylyakov, V. Patel, J.E. Lukens, K.K. Likharev, Rapid single flux quantum T-flip flop operating up to 770 GHz. IEEE Trans. Appl. Supercond. 9(2), 3212–3215 (1999)CrossRef
56.
Zurück zum Zitat T. Jabbari, M. Bocko, E.G. Friedman, All-JJ logic based on bistable JJs. IEEE Trans. Appl. Supercond. 33(5), 1–7 (2023) T. Jabbari, M. Bocko, E.G. Friedman, All-JJ logic based on bistable JJs. IEEE Trans. Appl. Supercond. 33(5), 1–7 (2023)
57.
Zurück zum Zitat T. Jabbari, E.G. Friedman, Transmission lines in VLSI complexity single flux quantum systems, in Proceedings of the PhotonIcs and Electromagnetics Research Symposium (2023), pp. 1749–1759 T. Jabbari, E.G. Friedman, Transmission lines in VLSI complexity single flux quantum systems, in Proceedings of the PhotonIcs and Electromagnetics Research Symposium (2023), pp. 1749–1759
58.
Zurück zum Zitat R. Bairamkulov, T. Jabbari, E.G. Friedman, QuCTS – single flux quantum clock tree synthesis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 41(10), 3346–3358 (2022)CrossRef R. Bairamkulov, T. Jabbari, E.G. Friedman, QuCTS – single flux quantum clock tree synthesis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 41(10), 3346–3358 (2022)CrossRef
59.
Zurück zum Zitat T. Jabbari, J. Kawa, E.G. Friedman, H-tree clock synthesis in RSFQ circuits, in Proceedings of the IEEE Baltic Electronics Conference (2020), pp. 1–5 T. Jabbari, J. Kawa, E.G. Friedman, H-tree clock synthesis in RSFQ circuits, in Proceedings of the IEEE Baltic Electronics Conference (2020), pp. 1–5
60.
Zurück zum Zitat T. Jabbari, G. Krylov, J Kawa, E.G. Friedman, Splitter trees in single flux quantum circuits. IEEE Trans. Appl. Supercond. 31(5), 1302606 (2021) T. Jabbari, G. Krylov, J Kawa, E.G. Friedman, Splitter trees in single flux quantum circuits. IEEE Trans. Appl. Supercond. 31(5), 1302606 (2021)
61.
Zurück zum Zitat T. Jabbari, E.G. Friedman, Flux mitigation in wide superconductive striplines. IEEE Trans. Appl. Supercond. 32(3), 1–6 (2022)CrossRef T. Jabbari, E.G. Friedman, Flux mitigation in wide superconductive striplines. IEEE Trans. Appl. Supercond. 32(3), 1–6 (2022)CrossRef
63.
Zurück zum Zitat T. Jabbari, E.G. Friedman, Stripline topology for flux mitigation. IEEE Trans. Appl. Supercond. 335, 1–4 (2023) T. Jabbari, E.G. Friedman, Stripline topology for flux mitigation. IEEE Trans. Appl. Supercond. 335, 1–4 (2023)
65.
Zurück zum Zitat T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Resonance effects in single flux quantum interconnect, in Proceedings of the Government Microcircuit Applications and Critical Technology Conference (2020), pp. 1–5 T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Resonance effects in single flux quantum interconnect, in Proceedings of the Government Microcircuit Applications and Critical Technology Conference (2020), pp. 1–5
87.
Zurück zum Zitat T. Jabbari, E.G. Friedman, Surface inductance of superconductive striplines. IEEE Trans. Circuits Syst. II Express Briefs 69(6), 2952–2956 (2022) T. Jabbari, E.G. Friedman, Surface inductance of superconductive striplines. IEEE Trans. Circuits Syst. II Express Briefs 69(6), 2952–2956 (2022)
98.
Zurück zum Zitat G. Krylov, E.G. Friedman, Sense amplifier for spin-based cryogenic memory cells. IEEE Trans. Appl. Supercond. 29(5), 1–4 (2019). Art no. 1501804 G. Krylov, E.G. Friedman, Sense amplifier for spin-based cryogenic memory cells. IEEE Trans. Appl. Supercond. 29(5), 1–4 (2019). Art no. 1501804
110.
Zurück zum Zitat G. Krylov, E.G. Friedman, Partitioning RSFQ circuits for current recycling. IEEE Trans. Appl. Supercond. 31(5), 1–6 (2021)CrossRef G. Krylov, E.G. Friedman, Partitioning RSFQ circuits for current recycling. IEEE Trans. Appl. Supercond. 31(5), 1–6 (2021)CrossRef
131.
Zurück zum Zitat G. Krylov, E.G. Friedman, Design methodology for distributed large-scale ERSFQ bias networks. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 28(11), 2438–2447 (2020) G. Krylov, E.G. Friedman, Design methodology for distributed large-scale ERSFQ bias networks. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 28(11), 2438–2447 (2020)
132.
Zurück zum Zitat G. Krylov, E.G. Friedman, Asynchronous dynamic single flux quantum majority gates. IEEE Trans. Appl. Supercond. 30(5), 1–7 (2020). Art no. 1300907 G. Krylov, E.G. Friedman, Asynchronous dynamic single flux quantum majority gates. IEEE Trans. Appl. Supercond. 30(5), 1–7 (2020). Art no. 1300907
145.
Zurück zum Zitat H. Kumar, T. Jabbari, G. Krylov, K. Basu, E.G. Friedman, R. Karri, Toward increasing the difficulty of reverse engineering of RSFQ circuits. IEEE Trans. Appl. Supercond. 30(3), 1–13 (2020)CrossRef H. Kumar, T. Jabbari, G. Krylov, K. Basu, E.G. Friedman, R. Karri, Toward increasing the difficulty of reverse engineering of RSFQ circuits. IEEE Trans. Appl. Supercond. 30(3), 1–13 (2020)CrossRef
148.
Zurück zum Zitat T. Jabbari, H. Zandi, F. Foroughi, A. Bozbey, M. Fardmanesh, Investigation of readout cell configuration and parameters on functionality and stability of bi-directional RSFQ TFF. IEEE Trans. Appl. Supercond. 26(3), 1–5 (2016)CrossRef T. Jabbari, H. Zandi, F. Foroughi, A. Bozbey, M. Fardmanesh, Investigation of readout cell configuration and parameters on functionality and stability of bi-directional RSFQ TFF. IEEE Trans. Appl. Supercond. 26(3), 1–5 (2016)CrossRef
149.
Zurück zum Zitat G. Krylov, E.G. Friedman, Bias distribution in ERSFQ VLSI circuits, in Proceedings of the IEEE International Symposium on Circuits and Systems (2020), pp. 1–5 G. Krylov, E.G. Friedman, Bias distribution in ERSFQ VLSI circuits, in Proceedings of the IEEE International Symposium on Circuits and Systems (2020), pp. 1–5
150.
Zurück zum Zitat G. Krylov, E.G. Friedman, Bias networks for high complexity energy efficient single flux quantum circuits, in Proceedings of the Government Microcircuit Applications & Critical Technology Conference (2020) G. Krylov, E.G. Friedman, Bias networks for high complexity energy efficient single flux quantum circuits, in Proceedings of the Government Microcircuit Applications & Critical Technology Conference (2020)
151.
Zurück zum Zitat T. Jabbari, H. Zandi, M. Fardmanesh, Frequency limitation due to switching transition of the bias current in bidirectional RSFQ logic. J. Supercond. Novel Magn. 30, 3619–3624 (2017)CrossRef T. Jabbari, H. Zandi, M. Fardmanesh, Frequency limitation due to switching transition of the bias current in bidirectional RSFQ logic. J. Supercond. Novel Magn. 30, 3619–3624 (2017)CrossRef
159.
Zurück zum Zitat G. Krylov, E.G. Friedman, Design for testability of SFQ circuits. IEEE Trans. Appl. Supercond. 27(8), 1–7 (2017)CrossRef G. Krylov, E.G. Friedman, Design for testability of SFQ circuits. IEEE Trans. Appl. Supercond. 27(8), 1–7 (2017)CrossRef
201.
Zurück zum Zitat A. Fujimaki, M. Tanaka, T. Yamada, Y. Yamanashi, H. Park, N. Yoshikawa, Bit-serial single flux quantum microprocessor CORE. IEICE Trans. Electron. 91(3), 342–349 (2008)CrossRef A. Fujimaki, M. Tanaka, T. Yamada, Y. Yamanashi, H. Park, N. Yoshikawa, Bit-serial single flux quantum microprocessor CORE. IEICE Trans. Electron. 91(3), 342–349 (2008)CrossRef
207.
216.
Zurück zum Zitat G. Krylov, E.G. Friedman, Globally asynchronous, locally synchronous clocking and shared interconnect for large-scale SFQ systems. IEEE Trans. Appl. Supercond. 29(5), 1–5 (2019) G. Krylov, E.G. Friedman, Globally asynchronous, locally synchronous clocking and shared interconnect for large-scale SFQ systems. IEEE Trans. Appl. Supercond. 29(5), 1–5 (2019)
217.
Zurück zum Zitat G. Krylov, E.G. Friedman, Test point insertion for RSFQ circuits, in Proceedings of the IEEE International Symposium on Circuits and Systems (2017), pp. 2022–2025 G. Krylov, E.G. Friedman, Test point insertion for RSFQ circuits, in Proceedings of the IEEE International Symposium on Circuits and Systems (2017), pp. 2022–2025
242.
Zurück zum Zitat T. Jabbari, R. Bairamkulov, J. Kawa, E. Friedman, Interconnect benchmark circuits for single flux quantum integrated circuits. IEEE Trans. Appl. Supercond. (2023). Under review T. Jabbari, R. Bairamkulov, J. Kawa, E. Friedman, Interconnect benchmark circuits for single flux quantum integrated circuits. IEEE Trans. Appl. Supercond. (2023). Under review
251.
Zurück zum Zitat E.G. Friedman, Clock distribution design in VLSI circuits, in Proceedings of the IEEE International Symposium on Circuits and Systems (1993), pp. 1475–1478 E.G. Friedman, Clock distribution design in VLSI circuits, in Proceedings of the IEEE International Symposium on Circuits and Systems (1993), pp. 1475–1478
253.
Zurück zum Zitat E.G. Friedman, Clock distribution networks in synchronous digital integrated circuits. Proc. IEEE 89(5), 665–692 (2001)CrossRef E.G. Friedman, Clock distribution networks in synchronous digital integrated circuits. Proc. IEEE 89(5), 665–692 (2001)CrossRef
357.
Zurück zum Zitat E.G. Friedman, High Performance Clock Distribution Networks (Springer, Berlin, 1997)CrossRef E.G. Friedman, High Performance Clock Distribution Networks (Springer, Berlin, 1997)CrossRef
374.
Zurück zum Zitat M. Dorojevets, C. Ayala, A. Kasperek, Development and evaluation of design techniques for high-performance wave-pipelined wide datapath RSFQ processors, in Proceedings of the IEEE International Superconductive Electronics Conference (2009), pp. 1–2 M. Dorojevets, C. Ayala, A. Kasperek, Development and evaluation of design techniques for high-performance wave-pipelined wide datapath RSFQ processors, in Proceedings of the IEEE International Superconductive Electronics Conference (2009), pp. 1–2
381.
Zurück zum Zitat Z.J. Deng, N. Yoshikawa, S.R. Whiteley, T. Van Duzer, Data-driven self-timed RSFQ digital integrated circuit and system. IEEE Trans. Appl. Supercond. 7(2), 3634–3637 (1997)CrossRef Z.J. Deng, N. Yoshikawa, S.R. Whiteley, T. Van Duzer, Data-driven self-timed RSFQ digital integrated circuit and system. IEEE Trans. Appl. Supercond. 7(2), 3634–3637 (1997)CrossRef
389.
Zurück zum Zitat K. Gaj, Q.P. Herr, V. Adler, A. Krasniewski, E.G. Friedman, M.J. Feldman, Tools for the computer-aided design of multigigahertz superconducting digital circuits. IEEE Trans. Appl. Supercond. 9(1), 18–38 (1999)CrossRef K. Gaj, Q.P. Herr, V. Adler, A. Krasniewski, E.G. Friedman, M.J. Feldman, Tools for the computer-aided design of multigigahertz superconducting digital circuits. IEEE Trans. Appl. Supercond. 9(1), 18–38 (1999)CrossRef
390.
Zurück zum Zitat C.J. Fourie, Digital superconducting electronics design tools - status and roadmap. IEEE Trans. Appl. Supercond. 28(5), 1–12 (2018)CrossRef C.J. Fourie, Digital superconducting electronics design tools - status and roadmap. IEEE Trans. Appl. Supercond. 28(5), 1–12 (2018)CrossRef
391.
Zurück zum Zitat B. Mathewson, The evolution of SOC interconnect and how NOC fits within it, in Proceedings of the ACM/IEEE Design Automation Conference (2010), pp. 312–313 B. Mathewson, The evolution of SOC interconnect and how NOC fits within it, in Proceedings of the ACM/IEEE Design Automation Conference (2010), pp. 312–313
392.
Zurück zum Zitat T.V. Filippov, A. Sahu, A.F. Kirichenko, I.V. Vernik, M. Dorojevets, C.L. Ayala, O.A. Mukhanov, 20 GHz operation of an asynchronous wave-pipelined RSFQ arithmetic-logic unit. Physics Procedia 36, 59–65 (2012)CrossRef T.V. Filippov, A. Sahu, A.F. Kirichenko, I.V. Vernik, M. Dorojevets, C.L. Ayala, O.A. Mukhanov, 20 GHz operation of an asynchronous wave-pipelined RSFQ arithmetic-logic unit. Physics Procedia 36, 59–65 (2012)CrossRef
393.
Zurück zum Zitat I.V. Vernik, D. Gupta, Two-phase 50 GHz on-chip long Josephson junction clock source. IEEE Trans. Appl. Supercond. 13(2), 587–590 (2003)CrossRef I.V. Vernik, D. Gupta, Two-phase 50 GHz on-chip long Josephson junction clock source. IEEE Trans. Appl. Supercond. 13(2), 587–590 (2003)CrossRef
394.
Zurück zum Zitat Y. Zhang, D. Gupta, Low-jitter on-chip clock for RSFQ circuit applications. Supercond. Sci. Technol. 12(11), 769 (1999) Y. Zhang, D. Gupta, Low-jitter on-chip clock for RSFQ circuit applications. Supercond. Sci. Technol. 12(11), 769 (1999)
395.
Zurück zum Zitat R. Ginosar, Fourteen ways to fool your synchronizer, in Proceedings of the IEEE International Symposium on Asynchronous Circuits and Systems (2003), pp. 89–96 R. Ginosar, Fourteen ways to fool your synchronizer, in Proceedings of the IEEE International Symposium on Asynchronous Circuits and Systems (2003), pp. 89–96
396.
Zurück zum Zitat P. Horowitz, W. Hill, The Art of Electronics (Cambridge University Press, Cambridge, 1989) P. Horowitz, W. Hill, The Art of Electronics (Cambridge University Press, Cambridge, 1989)
397.
Zurück zum Zitat S. Pasricha, N. Dutt, ORB: an on-chip optical ring bus communication architecture for multi-processor systems-on-chip, in Proceedings of the ACM/IEEE Asia and South Pacific Design Automation Conference (2008), pp. 789–794 S. Pasricha, N. Dutt, ORB: an on-chip optical ring bus communication architecture for multi-processor systems-on-chip, in Proceedings of the ACM/IEEE Asia and South Pacific Design Automation Conference (2008), pp. 789–794
398.
Zurück zum Zitat S. Narayana, V.K. Semenov, Y.A. Polyakov, V. Dotsenko, S.K. Tolpygo, Design and testing of high-speed interconnects for superconducting multi-chip modules. Supercond. Sci. Technol. 25(10), 1–10 (2012)CrossRef S. Narayana, V.K. Semenov, Y.A. Polyakov, V. Dotsenko, S.K. Tolpygo, Design and testing of high-speed interconnects for superconducting multi-chip modules. Supercond. Sci. Technol. 25(10), 1–10 (2012)CrossRef
Metadaten
Titel
GALS Clocking and Shared Interconnect for Large-Scale SFQ Systems
verfasst von
Gleb Krylov
Tahereh Jabbari
Eby G. Friedman
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-47475-0_12

Neuer Inhalt