Skip to main content

2024 | OriginalPaper | Buchkapitel

17. Wave Pipelining in DSFQ Circuits

verfasst von : Gleb Krylov, Tahereh Jabbari, Eby G. Friedman

Erschienen in: Single Flux Quantum Integrated Circuit Design

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Dynamic SFQ (DSFQ) circuits are a promising circuit topology for asynchronous SFQ logic. The operation of DSFQ circuits, however, significantly differs from both CMOS logic and conventional synchronous RSFQ logic. Novel design methodologies are necessary to synthesize DSFQ circuits while increasing performance and decreasing area. The path balancing process, essential for RSFQ circuits, is less important for DSFQ. Path delay balancing, however, can increase the performance of DSFQ circuits by enabling wave pipelining. In this chapter, different path balancing approaches for DSFQ circuits are evaluated and compared to equivalent RSFQ circuits. A partial path balancing methodology is described and characterized, where path balancing is first applied to the critical paths. This methodology enables wave pipelining in DSFQ circuits and reduces the period between data waves.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
39.
Zurück zum Zitat T. Jabbari, G. Krylov, S. Whiteley, E. Mlinar, J Kawa, E.G. Friedman, Interconnect routing for large scale RSFQ circuits. IEEE Trans. Appl. Supercond. 29(5), 1102805 (2019) T. Jabbari, G. Krylov, S. Whiteley, E. Mlinar, J Kawa, E.G. Friedman, Interconnect routing for large scale RSFQ circuits. IEEE Trans. Appl. Supercond. 29(5), 1102805 (2019)
42.
Zurück zum Zitat T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Repeater insertion in SFQ interconnect. IEEE Trans. Appl. Supercond. 30(8), 5400508 (2020) T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Repeater insertion in SFQ interconnect. IEEE Trans. Appl. Supercond. 30(8), 5400508 (2020)
57.
Zurück zum Zitat T. Jabbari, E.G. Friedman, Transmission lines in VLSI complexity single flux quantum systems, in Proceedings of the PhotonIcs and Electromagnetics Research Symposium (2023), pp. 1749–1759 T. Jabbari, E.G. Friedman, Transmission lines in VLSI complexity single flux quantum systems, in Proceedings of the PhotonIcs and Electromagnetics Research Symposium (2023), pp. 1749–1759
58.
Zurück zum Zitat R. Bairamkulov, T. Jabbari, E.G. Friedman, QuCTS – single flux quantum clock tree synthesis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 41(10), 3346–3358 (2022)CrossRef R. Bairamkulov, T. Jabbari, E.G. Friedman, QuCTS – single flux quantum clock tree synthesis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 41(10), 3346–3358 (2022)CrossRef
59.
Zurück zum Zitat T. Jabbari, J. Kawa, E.G. Friedman, H-tree clock synthesis in RSFQ circuits, in Proceedings of the IEEE Baltic Electronics Conference (2020), pp. 1–5 T. Jabbari, J. Kawa, E.G. Friedman, H-tree clock synthesis in RSFQ circuits, in Proceedings of the IEEE Baltic Electronics Conference (2020), pp. 1–5
60.
Zurück zum Zitat T. Jabbari, G. Krylov, J Kawa, E.G. Friedman, Splitter trees in single flux quantum circuits. IEEE Trans. Appl. Supercond. 31(5), 1302606 (2021) T. Jabbari, G. Krylov, J Kawa, E.G. Friedman, Splitter trees in single flux quantum circuits. IEEE Trans. Appl. Supercond. 31(5), 1302606 (2021)
65.
Zurück zum Zitat T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Resonance effects in single flux quantum interconnect, in Proceedings of the Government Microcircuit Applications and Critical Technology Conference (2020), pp. 1–5 T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Resonance effects in single flux quantum interconnect, in Proceedings of the Government Microcircuit Applications and Critical Technology Conference (2020), pp. 1–5
110.
Zurück zum Zitat G. Krylov, E.G. Friedman, Partitioning RSFQ circuits for current recycling. IEEE Trans. Appl. Supercond. 31(5), 1–6 (2021)CrossRef G. Krylov, E.G. Friedman, Partitioning RSFQ circuits for current recycling. IEEE Trans. Appl. Supercond. 31(5), 1–6 (2021)CrossRef
131.
Zurück zum Zitat G. Krylov, E.G. Friedman, Design methodology for distributed large-scale ERSFQ bias networks. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 28(11), 2438–2447 (2020) G. Krylov, E.G. Friedman, Design methodology for distributed large-scale ERSFQ bias networks. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 28(11), 2438–2447 (2020)
132.
Zurück zum Zitat G. Krylov, E.G. Friedman, Asynchronous dynamic single flux quantum majority gates. IEEE Trans. Appl. Supercond. 30(5), 1–7 (2020). Art no. 1300907 G. Krylov, E.G. Friedman, Asynchronous dynamic single flux quantum majority gates. IEEE Trans. Appl. Supercond. 30(5), 1–7 (2020). Art no. 1300907
145.
Zurück zum Zitat H. Kumar, T. Jabbari, G. Krylov, K. Basu, E.G. Friedman, R. Karri, Toward increasing the difficulty of reverse engineering of RSFQ circuits. IEEE Trans. Appl. Supercond. 30(3), 1–13 (2020)CrossRef H. Kumar, T. Jabbari, G. Krylov, K. Basu, E.G. Friedman, R. Karri, Toward increasing the difficulty of reverse engineering of RSFQ circuits. IEEE Trans. Appl. Supercond. 30(3), 1–13 (2020)CrossRef
147.
Zurück zum Zitat Y. Mustafa, T. Jabbari, S. Köse, Emerging attacks on logic locking in SFQ circuits and related countermeasures. IEEE Trans. Appl. Supercond. 32(3), 1–8 (2022)CrossRef Y. Mustafa, T. Jabbari, S. Köse, Emerging attacks on logic locking in SFQ circuits and related countermeasures. IEEE Trans. Appl. Supercond. 32(3), 1–8 (2022)CrossRef
216.
Zurück zum Zitat G. Krylov, E.G. Friedman, Globally asynchronous, locally synchronous clocking and shared interconnect for large-scale SFQ systems. IEEE Trans. Appl. Supercond. 29(5), 1–5 (2019) G. Krylov, E.G. Friedman, Globally asynchronous, locally synchronous clocking and shared interconnect for large-scale SFQ systems. IEEE Trans. Appl. Supercond. 29(5), 1–5 (2019)
242.
Zurück zum Zitat T. Jabbari, R. Bairamkulov, J. Kawa, E. Friedman, Interconnect benchmark circuits for single flux quantum integrated circuits. IEEE Trans. Appl. Supercond. (2023). Under review T. Jabbari, R. Bairamkulov, J. Kawa, E. Friedman, Interconnect benchmark circuits for single flux quantum integrated circuits. IEEE Trans. Appl. Supercond. (2023). Under review
258.
Zurück zum Zitat S.V. Rylov, Clockless dynamic SFQ and gate with high input skew tolerance. IEEE Trans. Appl. Supercond. 29(5), 1–5 (2019)CrossRef S.V. Rylov, Clockless dynamic SFQ and gate with high input skew tolerance. IEEE Trans. Appl. Supercond. 29(5), 1–5 (2019)CrossRef
460.
Zurück zum Zitat G. Pasandi, M. Pedram, PBMap: a path balancing technology mapping algorithm for single flux quantum logic circuits. IEEE Trans. Appl. Supercond. 29(4), 1–14 (2019)CrossRef G. Pasandi, M. Pedram, PBMap: a path balancing technology mapping algorithm for single flux quantum logic circuits. IEEE Trans. Appl. Supercond. 29(4), 1–14 (2019)CrossRef
508.
Zurück zum Zitat W.P. Burleson, M. Ciesielski, F. Klass, W. Liu, Wave-pipelining: a tutorial and research survey. IEEE Trans. Very Large Scale Integr. Syst. 6(3), 464–474 (1998)CrossRef W.P. Burleson, M. Ciesielski, F. Klass, W. Liu, Wave-pipelining: a tutorial and research survey. IEEE Trans. Very Large Scale Integr. Syst. 6(3), 464–474 (1998)CrossRef
509.
Zurück zum Zitat M. Dorojevets, C.L. Ayala, A.K. Kasperek, Data-flow microarchitecture for wide datapath RSFQ processors: design study. IEEE Trans. Appl. Supercond. 21(3), 787–791 (2011)CrossRef M. Dorojevets, C.L. Ayala, A.K. Kasperek, Data-flow microarchitecture for wide datapath RSFQ processors: design study. IEEE Trans. Appl. Supercond. 21(3), 787–791 (2011)CrossRef
510.
Zurück zum Zitat S.S. Meher, J. Ravi, M. Celik, S. Miller, A. Sahu, A. Talalaevskii, A. Inamdar, Superconductor standard cell library for advanced EDA design. IEEE Trans. Appl. Supercond. 31(5), 1–7 (2021)CrossRef S.S. Meher, J. Ravi, M. Celik, S. Miller, A. Sahu, A. Talalaevskii, A. Inamdar, Superconductor standard cell library for advanced EDA design. IEEE Trans. Appl. Supercond. 31(5), 1–7 (2021)CrossRef
511.
Zurück zum Zitat B. Dimov, M. Khabipov, D. Balashov, C.M. Brandt, F. Buchholz, J. Niemeyer, F.H. Uhlmann, Tuning of the RSFQ gate speed by different Stewart-McCumber parameters of the Josephson junctions. IEEE Trans. Appl. Supercond. 15(2), 284–287 (2005)CrossRef B. Dimov, M. Khabipov, D. Balashov, C.M. Brandt, F. Buchholz, J. Niemeyer, F.H. Uhlmann, Tuning of the RSFQ gate speed by different Stewart-McCumber parameters of the Josephson junctions. IEEE Trans. Appl. Supercond. 15(2), 284–287 (2005)CrossRef
Metadaten
Titel
Wave Pipelining in DSFQ Circuits
verfasst von
Gleb Krylov
Tahereh Jabbari
Eby G. Friedman
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-47475-0_17

Neuer Inhalt