Skip to main content

2024 | OriginalPaper | Buchkapitel

24. Repeater Insertion in SFQ Interconnect

verfasst von : Gleb Krylov, Tahereh Jabbari, Eby G. Friedman

Erschienen in: Single Flux Quantum Integrated Circuit Design

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Superconductive passive transmission lines (PTL) are widely used for signal routing in large scale rapid single flux quantum (RSFQ) circuits. Due to the imperfect matching of the transmission lines between the driver and receiver, single flux quantum (SFQ) pulses are partially reflected. The round trip propagation time of these reflections can coincide with the following SFQ pulse, resulting in a decrease in bias margins or incorrect circuit behavior. This resonant effect depends upon the length of the PTL and the clock frequency of the signal. A methodology to reduce and manage this effect is the focus of this chapter. A closed-form expression describing the dependence of the resonance frequency on the length of the PTL is presented. This expression describes a set of forbidden lengths for PTL interconnect segments in RSFQ circuits. The methodology and algorithm insert active PTL-based repeaters into long superconductive interconnect while ensuring the length of the line segment is outside the forbidden region while increasing bias margins.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
22.
Zurück zum Zitat T. Jabbari, F. Shanehsazzadeh, H. Zandi, M. Banzet, J. Schubert, M. Fardmanesh, Effects of the design parameters on characteristics of the inductances and JJs in HTS RSFQ circuits. IEEE Trans. Appl. Supercond. 28(7), 1–4 (2018)CrossRef T. Jabbari, F. Shanehsazzadeh, H. Zandi, M. Banzet, J. Schubert, M. Fardmanesh, Effects of the design parameters on characteristics of the inductances and JJs in HTS RSFQ circuits. IEEE Trans. Appl. Supercond. 28(7), 1–4 (2018)CrossRef
28.
Zurück zum Zitat D.S. Holmes, A.L. Ripple, M.A. Manheimer, Energy-efficient superconducting computing—power budgets and requirements. IEEE Trans. Appl. Supercond. 23(3), 1701610 (2013) D.S. Holmes, A.L. Ripple, M.A. Manheimer, Energy-efficient superconducting computing—power budgets and requirements. IEEE Trans. Appl. Supercond. 23(3), 1701610 (2013)
29.
Zurück zum Zitat M.A. Manheimer, Cryogenic computing complexity program: phase 1 introduction. IEEE Trans. Appl. Supercond. 25(3), 1–4 (2015)CrossRef M.A. Manheimer, Cryogenic computing complexity program: phase 1 introduction. IEEE Trans. Appl. Supercond. 25(3), 1–4 (2015)CrossRef
39.
Zurück zum Zitat T. Jabbari, G. Krylov, S. Whiteley, E. Mlinar, J Kawa, E.G. Friedman, Interconnect routing for large scale RSFQ circuits. IEEE Trans. Appl. Supercond. 29(5), 1102805 (2019) T. Jabbari, G. Krylov, S. Whiteley, E. Mlinar, J Kawa, E.G. Friedman, Interconnect routing for large scale RSFQ circuits. IEEE Trans. Appl. Supercond. 29(5), 1102805 (2019)
42.
Zurück zum Zitat T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Repeater insertion in SFQ interconnect. IEEE Trans. Appl. Supercond. 30(8), 5400508 (2020) T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Repeater insertion in SFQ interconnect. IEEE Trans. Appl. Supercond. 30(8), 5400508 (2020)
57.
Zurück zum Zitat T. Jabbari, E.G. Friedman, Transmission lines in VLSI complexity single flux quantum systems, in Proceedings of the PhotonIcs and Electromagnetics Research Symposium (2023), pp. 1749–1759 T. Jabbari, E.G. Friedman, Transmission lines in VLSI complexity single flux quantum systems, in Proceedings of the PhotonIcs and Electromagnetics Research Symposium (2023), pp. 1749–1759
59.
Zurück zum Zitat T. Jabbari, J. Kawa, E.G. Friedman, H-tree clock synthesis in RSFQ circuits, in Proceedings of the IEEE Baltic Electronics Conference (2020), pp. 1–5 T. Jabbari, J. Kawa, E.G. Friedman, H-tree clock synthesis in RSFQ circuits, in Proceedings of the IEEE Baltic Electronics Conference (2020), pp. 1–5
60.
Zurück zum Zitat T. Jabbari, G. Krylov, J Kawa, E.G. Friedman, Splitter trees in single flux quantum circuits. IEEE Trans. Appl. Supercond. 31(5), 1302606 (2021) T. Jabbari, G. Krylov, J Kawa, E.G. Friedman, Splitter trees in single flux quantum circuits. IEEE Trans. Appl. Supercond. 31(5), 1302606 (2021)
61.
Zurück zum Zitat T. Jabbari, E.G. Friedman, Flux mitigation in wide superconductive striplines. IEEE Trans. Appl. Supercond. 32(3), 1–6 (2022)CrossRef T. Jabbari, E.G. Friedman, Flux mitigation in wide superconductive striplines. IEEE Trans. Appl. Supercond. 32(3), 1–6 (2022)CrossRef
63.
Zurück zum Zitat T. Jabbari, E.G. Friedman, Stripline topology for flux mitigation. IEEE Trans. Appl. Supercond. 335, 1–4 (2023) T. Jabbari, E.G. Friedman, Stripline topology for flux mitigation. IEEE Trans. Appl. Supercond. 335, 1–4 (2023)
65.
Zurück zum Zitat T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Resonance effects in single flux quantum interconnect, in Proceedings of the Government Microcircuit Applications and Critical Technology Conference (2020), pp. 1–5 T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Resonance effects in single flux quantum interconnect, in Proceedings of the Government Microcircuit Applications and Critical Technology Conference (2020), pp. 1–5
87.
Zurück zum Zitat T. Jabbari, E.G. Friedman, Surface inductance of superconductive striplines. IEEE Trans. Circuits Syst. II Express Briefs 69(6), 2952–2956 (2022) T. Jabbari, E.G. Friedman, Surface inductance of superconductive striplines. IEEE Trans. Circuits Syst. II Express Briefs 69(6), 2952–2956 (2022)
111.
Zurück zum Zitat S.K. Tolpygo, V. Bolkhovsky, T.J. Weir, A. Wynn, D.E. Oates, L.M. Johnson, M.A. Gouker, Advanced fabrication processes for superconducting very large-scale integrated circuits. IEEE Trans. Appl. Supercond. 26(3), 1–10 (2016)CrossRef S.K. Tolpygo, V. Bolkhovsky, T.J. Weir, A. Wynn, D.E. Oates, L.M. Johnson, M.A. Gouker, Advanced fabrication processes for superconducting very large-scale integrated circuits. IEEE Trans. Appl. Supercond. 26(3), 1–10 (2016)CrossRef
137.
Zurück zum Zitat T. Jabbari, E.G. Friedman, Inductive and capacitive coupling noise in superconductive VLSI circuits. IEEE Trans. Appl. Supercond. 33(9), 3800707 (2023) T. Jabbari, E.G. Friedman, Inductive and capacitive coupling noise in superconductive VLSI circuits. IEEE Trans. Appl. Supercond. 33(9), 3800707 (2023)
165.
Zurück zum Zitat T. Van Duzer, C.W. Turner, Principles of Superconductive Devices and Circuits, 2nd edn. (Prentice Hall, Hoboken, 1999) T. Van Duzer, C.W. Turner, Principles of Superconductive Devices and Circuits, 2nd edn. (Prentice Hall, Hoboken, 1999)
207.
209.
Zurück zum Zitat Y. Hashimoto, S. Yorozu, Y. Kameda, A. Fujimaki, H. Terai, N. Yoshikawa, Design and investigation of gate-to-gate passive interconnections for SFQ logic circuits. IEEE Trans. Appl. Supercond. 15(3), 3814–3820 (2005)CrossRef Y. Hashimoto, S. Yorozu, Y. Kameda, A. Fujimaki, H. Terai, N. Yoshikawa, Design and investigation of gate-to-gate passive interconnections for SFQ logic circuits. IEEE Trans. Appl. Supercond. 15(3), 3814–3820 (2005)CrossRef
211.
Zurück zum Zitat L. Schindler, P. l. Roux, C.J. Fourie, Impedance matching of passive transmission line receivers to improve reflections between RSFQ logic cells. IEEE Trans. Appl. Supercond. 30(2), 1–7 (2020) L. Schindler, P. l. Roux, C.J. Fourie, Impedance matching of passive transmission line receivers to improve reflections between RSFQ logic cells. IEEE Trans. Appl. Supercond. 30(2), 1–7 (2020)
213.
Zurück zum Zitat S. Razmkhah, A. Bozbey, Design of the passive transmission lines for different stripline widths and impedances. IEEE Trans. Appl. Supercond. 26(8), 1–6 (2016)CrossRef S. Razmkhah, A. Bozbey, Design of the passive transmission lines for different stripline widths and impedances. IEEE Trans. Appl. Supercond. 26(8), 1–6 (2016)CrossRef
231.
Zurück zum Zitat K. Gaj, E.G. Friedman, M.J. Feldman, Timing of multi-gigahertz rapid single flux quantum digital circuits. J. VLSI Sig. Process. Syst. 16(2/3), 247–276 (1997)CrossRef K. Gaj, E.G. Friedman, M.J. Feldman, Timing of multi-gigahertz rapid single flux quantum digital circuits. J. VLSI Sig. Process. Syst. 16(2/3), 247–276 (1997)CrossRef
233.
Zurück zum Zitat D.K. Brock, RSFQ technology: circuits and systems. Int. J. High Speed Electron. Syst. 11(1), 307–362 (2001)CrossRef D.K. Brock, RSFQ technology: circuits and systems. Int. J. High Speed Electron. Syst. 11(1), 307–362 (2001)CrossRef
242.
Zurück zum Zitat T. Jabbari, R. Bairamkulov, J. Kawa, E. Friedman, Interconnect benchmark circuits for single flux quantum integrated circuits. IEEE Trans. Appl. Supercond. (2023). Under review T. Jabbari, R. Bairamkulov, J. Kawa, E. Friedman, Interconnect benchmark circuits for single flux quantum integrated circuits. IEEE Trans. Appl. Supercond. (2023). Under review
251.
Zurück zum Zitat E.G. Friedman, Clock distribution design in VLSI circuits, in Proceedings of the IEEE International Symposium on Circuits and Systems (1993), pp. 1475–1478 E.G. Friedman, Clock distribution design in VLSI circuits, in Proceedings of the IEEE International Symposium on Circuits and Systems (1993), pp. 1475–1478
253.
Zurück zum Zitat E.G. Friedman, Clock distribution networks in synchronous digital integrated circuits. Proc. IEEE 89(5), 665–692 (2001)CrossRef E.G. Friedman, Clock distribution networks in synchronous digital integrated circuits. Proc. IEEE 89(5), 665–692 (2001)CrossRef
398.
Zurück zum Zitat S. Narayana, V.K. Semenov, Y.A. Polyakov, V. Dotsenko, S.K. Tolpygo, Design and testing of high-speed interconnects for superconducting multi-chip modules. Supercond. Sci. Technol. 25(10), 1–10 (2012)CrossRef S. Narayana, V.K. Semenov, Y.A. Polyakov, V. Dotsenko, S.K. Tolpygo, Design and testing of high-speed interconnects for superconducting multi-chip modules. Supercond. Sci. Technol. 25(10), 1–10 (2012)CrossRef
400.
Zurück zum Zitat J.L. Neves, E.G. Friedman, Topological design of clock distribution networks based on non-zero clock skew specifications, in Proceedings of the IEEE Midwest Symposium on Circuits and Systems (1993), pp. 468–471 J.L. Neves, E.G. Friedman, Topological design of clock distribution networks based on non-zero clock skew specifications, in Proceedings of the IEEE Midwest Symposium on Circuits and Systems (1993), pp. 468–471
402.
Zurück zum Zitat J. Rosenfeld, E.G. Friedman, Design methodology for global resonant H-tree clock distribution networks. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 15(2), 135–148 (2007) J. Rosenfeld, E.G. Friedman, Design methodology for global resonant H-tree clock distribution networks. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 15(2), 135–148 (2007)
563.
Zurück zum Zitat Y. Hashimoto, S. Yorozu, Y. Kameda, A. Fujimaki, H. Terai, N. Yoshikawa, Development of passive interconnection technology for SFQ circuits. IEICE Trans. Electron. E88-C(2), 198–207 (2005)CrossRef Y. Hashimoto, S. Yorozu, Y. Kameda, A. Fujimaki, H. Terai, N. Yoshikawa, Development of passive interconnection technology for SFQ circuits. IEICE Trans. Electron. E88-C(2), 198–207 (2005)CrossRef
564.
Zurück zum Zitat T. Ortlepp, F.H. Uhlmann, Impedance matching of microstrip inductors in digital superconductive electronics. IEEE Trans. Appl. Supercond. 19(3), 644–648 (2009)CrossRef T. Ortlepp, F.H. Uhlmann, Impedance matching of microstrip inductors in digital superconductive electronics. IEEE Trans. Appl. Supercond. 19(3), 644–648 (2009)CrossRef
565.
Zurück zum Zitat Y.I. Ismail, E.G. Friedman, J.L. Neves, Repeater insertion in tree structured inductive interconnect. IEEE Trans. Circuits Syst. II Analog Digital Signal Process. 48(5), 471–481 (2001)CrossRef Y.I. Ismail, E.G. Friedman, J.L. Neves, Repeater insertion in tree structured inductive interconnect. IEEE Trans. Circuits Syst. II Analog Digital Signal Process. 48(5), 471–481 (2001)CrossRef
573.
Zurück zum Zitat Y. Hashimoto, S. Yorozu, Y. Kameda, V.K. Semenov, A design approach to passive interconnects for single flux quantum logic circuits. IEEE Trans. Appl. Supercond. 13(2), 535–538 (2003)CrossRef Y. Hashimoto, S. Yorozu, Y. Kameda, V.K. Semenov, A design approach to passive interconnects for single flux quantum logic circuits. IEEE Trans. Appl. Supercond. 13(2), 535–538 (2003)CrossRef
574.
Zurück zum Zitat M. Tanaka et al., Demonstration of a single-flux-quantum microprocessor using passive transmission lines. IEEE Trans. Appl. Supercond. 15(2), 400–404 (2005)CrossRef M. Tanaka et al., Demonstration of a single-flux-quantum microprocessor using passive transmission lines. IEEE Trans. Appl. Supercond. 15(2), 400–404 (2005)CrossRef
575.
Zurück zum Zitat V. Adler, E.G. Friedman, Uniform repeater insertion in RC trees. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 47(10), 1515–1523 (2000)CrossRef V. Adler, E.G. Friedman, Uniform repeater insertion in RC trees. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 47(10), 1515–1523 (2000)CrossRef
576.
Zurück zum Zitat A. Shukla, D. Kirichenko, A. Sahu, B. Chonigman, A. Inamdar, Investigation of passive transmission lines for the MIT-LL SFQ5EE process. IEEE Trans. Appl. Supercond. 29(5), 1–7 (2019)CrossRef A. Shukla, D. Kirichenko, A. Sahu, B. Chonigman, A. Inamdar, Investigation of passive transmission lines for the MIT-LL SFQ5EE process. IEEE Trans. Appl. Supercond. 29(5), 1–7 (2019)CrossRef
577.
Zurück zum Zitat P. Kogge, K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau, P. Franzon, W. Harrod, K. Hill, J. Hiller, S. Karp, S. Keckler, D. Klein, R. Lucas, M. Richards, A. Scarpelli, S. Scott, A. Snavely, T. Sterling, R.S. Williams, K. Yelick, Exascale computing study: technology challenges in achieving exascale systems, in Defense Advanced Research Projects Agency Information Processing Techniques Office, Technical Report, vol. 15 (2008) P. Kogge, K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau, P. Franzon, W. Harrod, K. Hill, J. Hiller, S. Karp, S. Keckler, D. Klein, R. Lucas, M. Richards, A. Scarpelli, S. Scott, A. Snavely, T. Sterling, R.S. Williams, K. Yelick, Exascale computing study: technology challenges in achieving exascale systems, in Defense Advanced Research Projects Agency Information Processing Techniques Office, Technical Report, vol. 15 (2008)
578.
Zurück zum Zitat N. Joukov, Y. Hashimoto, V.K. Semenov, Matching Josephson junctions with microstrip lines for SFQ pulses and weak signals. IIEICE Trans. Electron. E85-C(3), 636–640 (2002) N. Joukov, Y. Hashimoto, V.K. Semenov, Matching Josephson junctions with microstrip lines for SFQ pulses and weak signals. IIEICE Trans. Electron. E85-C(3), 636–640 (2002)
579.
Zurück zum Zitat M.A. El-Moursy, E.G. Friedman, Optimum wire sizing of RLC interconnect with repeaters. Integr. VLSI J. 38(2), 205–225 (2004)CrossRef M.A. El-Moursy, E.G. Friedman, Optimum wire sizing of RLC interconnect with repeaters. Integr. VLSI J. 38(2), 205–225 (2004)CrossRef
580.
Zurück zum Zitat D. Lee, M. Kim, I.L. Markov, Low-power clock trees for CPUs, in Proceedings of the IEEE/ACM International Conference on Computer-Aided Design (2010), pp. 444–451 D. Lee, M. Kim, I.L. Markov, Low-power clock trees for CPUs, in Proceedings of the IEEE/ACM International Conference on Computer-Aided Design (2010), pp. 444–451
581.
Zurück zum Zitat N. Takeuchi, Y. Yamanashi, Y. Saito, N. Yoshikawa, 3D simulation of superconducting microwave devices with an electromagnetic-field simulator. Phys. C Supercond. 469(15–20), 1662–1665 (2009)CrossRef N. Takeuchi, Y. Yamanashi, Y. Saito, N. Yoshikawa, 3D simulation of superconducting microwave devices with an electromagnetic-field simulator. Phys. C Supercond. 469(15–20), 1662–1665 (2009)CrossRef
582.
Zurück zum Zitat W. Chang, The inductance of a superconducting strip transmission line. J. Appl. Phys. 50, 8129–8134 (1979)CrossRef W. Chang, The inductance of a superconducting strip transmission line. J. Appl. Phys. 50, 8129–8134 (1979)CrossRef
583.
Zurück zum Zitat H.R. Mohebbi, A.H. Majedi, CAD model for circuit parameters of superconducting-based hybrid planar transmission lines. Supercond. Sci. Technol. 22(12), 125028 (2009) H.R. Mohebbi, A.H. Majedi, CAD model for circuit parameters of superconducting-based hybrid planar transmission lines. Supercond. Sci. Technol. 22(12), 125028 (2009)
584.
Zurück zum Zitat S.M. Anlage, H.J. Snortland, M.R. Beasley, A current controlled variable delay superconducting transmission line. IEEE Trans. Magn. 25(2), 1388–1391 (1989)CrossRef S.M. Anlage, H.J. Snortland, M.R. Beasley, A current controlled variable delay superconducting transmission line. IEEE Trans. Magn. 25(2), 1388–1391 (1989)CrossRef
585.
Zurück zum Zitat N.A. Joukov, D.E. Kirichenko, A.Y. Kidiyarova-Shevchenko, M.Y. Kupriyanov, Matching of rapid single flux quantum digital circuits and superconductive microstrip lines, in Journal of Physics Conference Series (2000), pp. 745–748 N.A. Joukov, D.E. Kirichenko, A.Y. Kidiyarova-Shevchenko, M.Y. Kupriyanov, Matching of rapid single flux quantum digital circuits and superconductive microstrip lines, in Journal of Physics Conference Series (2000), pp. 745–748
Metadaten
Titel
Repeater Insertion in SFQ Interconnect
verfasst von
Gleb Krylov
Tahereh Jabbari
Eby G. Friedman
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-47475-0_24

Neuer Inhalt