Skip to main content

2024 | OriginalPaper | Buchkapitel

25. Surface Inductance of Superconductive Striplines

verfasst von : Gleb Krylov, Tahereh Jabbari, Eby G. Friedman

Erschienen in: Single Flux Quantum Integrated Circuit Design

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Inductance in superconductive circuits plays a significant role in rapid single flux quantum (RSFQ) systems. Inductance estimation is a challenging issue. The microwave behavior of these inductances is characterized by the surface inductance of a line. A methodology to accurately estimate the surface inductance of a stripline is the focus of this chapter. A closed-form expression describing the dependence of the surface inductance of a stripline on the line thickness, magnetic field, and current density is provided. The effects of process parameter variations on the surface inductance are also discussed. An expression to model the effects of the trapezoidal geometry of a stripline is presented. The dependence of the surface inductance on the oxide and metal layer thickness is also presented. The objective is to provide an accurate estimate of the surface inductance for use in automated routing of VLSI complexity RSFQ circuits.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
39.
Zurück zum Zitat T. Jabbari, G. Krylov, S. Whiteley, E. Mlinar, J Kawa, E.G. Friedman, Interconnect routing for large scale RSFQ circuits. IEEE Trans. Appl. Supercond. 29(5), 1102805 (2019) T. Jabbari, G. Krylov, S. Whiteley, E. Mlinar, J Kawa, E.G. Friedman, Interconnect routing for large scale RSFQ circuits. IEEE Trans. Appl. Supercond. 29(5), 1102805 (2019)
41.
Zurück zum Zitat T. Jabbari, E.G. Friedman, Global interconnects in VLSI complexity single flux quantum systems, in Proceedings of the Workshop on System-Level Interconnect: Problems and Pathfinding Workshop (2020), pp. 1–7 T. Jabbari, E.G. Friedman, Global interconnects in VLSI complexity single flux quantum systems, in Proceedings of the Workshop on System-Level Interconnect: Problems and Pathfinding Workshop (2020), pp. 1–7
42.
Zurück zum Zitat T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Repeater insertion in SFQ interconnect. IEEE Trans. Appl. Supercond. 30(8), 5400508 (2020) T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, E.G. Friedman, Repeater insertion in SFQ interconnect. IEEE Trans. Appl. Supercond. 30(8), 5400508 (2020)
57.
Zurück zum Zitat T. Jabbari, E.G. Friedman, Transmission lines in VLSI complexity single flux quantum systems, in Proceedings of the PhotonIcs and Electromagnetics Research Symposium (2023), pp. 1749–1759 T. Jabbari, E.G. Friedman, Transmission lines in VLSI complexity single flux quantum systems, in Proceedings of the PhotonIcs and Electromagnetics Research Symposium (2023), pp. 1749–1759
61.
Zurück zum Zitat T. Jabbari, E.G. Friedman, Flux mitigation in wide superconductive striplines. IEEE Trans. Appl. Supercond. 32(3), 1–6 (2022)CrossRef T. Jabbari, E.G. Friedman, Flux mitigation in wide superconductive striplines. IEEE Trans. Appl. Supercond. 32(3), 1–6 (2022)CrossRef
63.
Zurück zum Zitat T. Jabbari, E.G. Friedman, Stripline topology for flux mitigation. IEEE Trans. Appl. Supercond. 335, 1–4 (2023) T. Jabbari, E.G. Friedman, Stripline topology for flux mitigation. IEEE Trans. Appl. Supercond. 335, 1–4 (2023)
86.
Zurück zum Zitat A.R. Kerr, Surface impedance of superconductors and normal conductors in EM simulators. National Radio Astronomy Observatory, Electronics Division Internal Report, No. 302 (1996) A.R. Kerr, Surface impedance of superconductors and normal conductors in EM simulators. National Radio Astronomy Observatory, Electronics Division Internal Report, No. 302 (1996)
87.
Zurück zum Zitat T. Jabbari, E.G. Friedman, Surface inductance of superconductive striplines. IEEE Trans. Circuits Syst. II Express Briefs 69(6), 2952–2956 (2022) T. Jabbari, E.G. Friedman, Surface inductance of superconductive striplines. IEEE Trans. Circuits Syst. II Express Briefs 69(6), 2952–2956 (2022)
111.
Zurück zum Zitat S.K. Tolpygo, V. Bolkhovsky, T.J. Weir, A. Wynn, D.E. Oates, L.M. Johnson, M.A. Gouker, Advanced fabrication processes for superconducting very large-scale integrated circuits. IEEE Trans. Appl. Supercond. 26(3), 1–10 (2016)CrossRef S.K. Tolpygo, V. Bolkhovsky, T.J. Weir, A. Wynn, D.E. Oates, L.M. Johnson, M.A. Gouker, Advanced fabrication processes for superconducting very large-scale integrated circuits. IEEE Trans. Appl. Supercond. 26(3), 1–10 (2016)CrossRef
137.
Zurück zum Zitat T. Jabbari, E.G. Friedman, Inductive and capacitive coupling noise in superconductive VLSI circuits. IEEE Trans. Appl. Supercond. 33(9), 3800707 (2023) T. Jabbari, E.G. Friedman, Inductive and capacitive coupling noise in superconductive VLSI circuits. IEEE Trans. Appl. Supercond. 33(9), 3800707 (2023)
165.
Zurück zum Zitat T. Van Duzer, C.W. Turner, Principles of Superconductive Devices and Circuits, 2nd edn. (Prentice Hall, Hoboken, 1999) T. Van Duzer, C.W. Turner, Principles of Superconductive Devices and Circuits, 2nd edn. (Prentice Hall, Hoboken, 1999)
549.
Zurück zum Zitat S.K. Tolpygo, E.B. Golden, T.J. Weir, V. Bolkhovsky, Inductance of superconductor integrated circuit features with sizes down to 120 nm. Supercond. Sci. Technol. 34(8), 1–24 (2021)CrossRef S.K. Tolpygo, E.B. Golden, T.J. Weir, V. Bolkhovsky, Inductance of superconductor integrated circuit features with sizes down to 120 nm. Supercond. Sci. Technol. 34(8), 1–24 (2021)CrossRef
566.
Zurück zum Zitat C.J. Fourie, C. Shawawreh, I.V. Vernik, T.V. Filippov, High-accuracy InductEx calibration sets for MIT-LL SFQ4ee and SFQ5ee processes. IEEE Trans. Appl. Supercond. 27(2), 1–5 (2017)CrossRef C.J. Fourie, C. Shawawreh, I.V. Vernik, T.V. Filippov, High-accuracy InductEx calibration sets for MIT-LL SFQ4ee and SFQ5ee processes. IEEE Trans. Appl. Supercond. 27(2), 1–5 (2017)CrossRef
582.
Zurück zum Zitat W. Chang, The inductance of a superconducting strip transmission line. J. Appl. Phys. 50, 8129–8134 (1979)CrossRef W. Chang, The inductance of a superconducting strip transmission line. J. Appl. Phys. 50, 8129–8134 (1979)CrossRef
586.
Zurück zum Zitat O.A. Mukhanov, Superconductive single-flux quantum technology, in Proceedings of the IEEE International Solid-State Circuits Conference (1994), pp. 126–127 O.A. Mukhanov, Superconductive single-flux quantum technology, in Proceedings of the IEEE International Solid-State Circuits Conference (1994), pp. 126–127
589.
Zurück zum Zitat G. Pasandi, A. Shafaei, M. Pedram, SFQmap: a technology mapping tool for single flux quantum logic circuits, in Proceedings of the IEEE International Symposium on Circuits and Systems (2018), pp. 1–5 G. Pasandi, A. Shafaei, M. Pedram, SFQmap: a technology mapping tool for single flux quantum logic circuits, in Proceedings of the IEEE International Symposium on Circuits and Systems (2018), pp. 1–5
590.
Zurück zum Zitat J. Mao, O. Wing, F. Chang, Synthesis of coupled transmission lines. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 44(4), 327–337 (1997)CrossRef J. Mao, O. Wing, F. Chang, Synthesis of coupled transmission lines. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 44(4), 327–337 (1997)CrossRef
591.
Zurück zum Zitat R.N. Das, V. Bolkhovsky, S.K. Tolpygo, P. Gouker, L.M. Johnson, E.A. Dauler, M.A. Gouker, Large scale cryogenic integration approach for superconducting high-performance computing, in Proceedings of the IEEE Electronic Components and Technology Conference (2017), pp. 675–683 R.N. Das, V. Bolkhovsky, S.K. Tolpygo, P. Gouker, L.M. Johnson, E.A. Dauler, M.A. Gouker, Large scale cryogenic integration approach for superconducting high-performance computing, in Proceedings of the IEEE Electronic Components and Technology Conference (2017), pp. 675–683
592.
Zurück zum Zitat W.H. Chang, Analytical IC metal-line capacitance formulas. IEEE Trans. Microwave Theory Tech. 24(9), 608–611 (1976)CrossRef W.H. Chang, Analytical IC metal-line capacitance formulas. IEEE Trans. Microwave Theory Tech. 24(9), 608–611 (1976)CrossRef
593.
Zurück zum Zitat C.K. Koc, P.F. Ordung, Schwarz-Christoffel transformation for the simulation of two-dimensional capacitance (VLSI circuits). IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 8(9), 1025–10279 (1989)CrossRef C.K. Koc, P.F. Ordung, Schwarz-Christoffel transformation for the simulation of two-dimensional capacitance (VLSI circuits). IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 8(9), 1025–10279 (1989)CrossRef
Metadaten
Titel
Surface Inductance of Superconductive Striplines
verfasst von
Gleb Krylov
Tahereh Jabbari
Eby G. Friedman
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-47475-0_25

Neuer Inhalt